Back to Search Start Over

Multifunctional chitosan-cross linked- curcumin-tannic acid biocomposites disrupt quorum sensing and biofilm formation in pathogenic bacteria.

Authors :
Khan ZA
Wani MY
Ahmad A
Basha MT
Aly NA
Yakout AA
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Jun; Vol. 271 (Pt 1), pp. 132719. Date of Electronic Publication: 2024 May 31.
Publication Year :
2024

Abstract

Natural products have a long history of success in treating bacterial infections, making them a promising source for novel antibacterial medications. Curcumin, an essential component of turmeric, has shown potential in treating bacterial infections and in this study, we covalently immobilized curcumin (Cur) onto chitosan (CS) using glutaraldehyde and tannic acid (TA), resulting in the fabrication of novel biocomposites with varying CS/Cur/TA ratios. Comprehensive characterization of these ternary biocomposites was conducted using FTIR, SEM, XPS, and XRD to assess their morphology, functional groups, and chemical structures. The inhibitory efficacy of these novel biocomposites (n = 4) against the growth and viability of Pseudomonas aeruginosa (ATCC27853) and Chromobacterium violaceum (ATCC12472) was evaluated and the most promising composite (C3) was investigated for its impact on quorum sensing (QS) and biofilm formation in these bacteria. Remarkably, this biocomposite significantly disrupted QS circuits and effectively curtailed biofilm formation in the tested pathogens without inducing appreciable toxicity. These findings underscore its potential for future in vivo studies, positioning it as a promising candidate for the development of biofilm disrupting antibacterial agents.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024. Published by Elsevier B.V.)

Details

Language :
English
ISSN :
1879-0003
Volume :
271
Issue :
Pt 1
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
38821810
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.132719