Back to Search Start Over

Bio-inspired gradient poly(lactic acid) nanofibers for active capturing of PM 0.3 and real-time respiratory monitoring.

Authors :
Zhu G
Wang C
Yang T
Gao N
Zhang Y
Zhu J
He X
Shao J
Li S
Zhang M
Zhang S
Gao J
Xu H
Source :
Journal of hazardous materials [J Hazard Mater] 2024 Aug 05; Vol. 474, pp. 134781. Date of Electronic Publication: 2024 May 31.
Publication Year :
2024

Abstract

The concept of bio-inspired gradient hierarchies, in which the well-defined MOF nanocrystals serve as active nanodielectrics to create electroactive shell at poly(lactic acid) (PLA) nanofibers, is introduced to promote the surface activity and electroactivity of PLA nanofibrous membranes (NFMs). The strategy enabled significant refinement of PLA nanofibers during coaxial electrospinning (∼40 % decline of fiber diameter), accompanied by remarkable increase of specific surface area (nearly 1.5 m <superscript>2</superscript> /g), porosity (approximately 85 %) and dielectric constants for the bio-inspired gradient PLA (BG-PLA) NFMs. It largely boosted initial electret properties and electrostatic adsorption capability of BG-PLA NFMs, as well as charge regeneration by TENG mechanisms even under high-humidity environment. The BG-PLA NFMs thus featured exceptionally high PM <subscript>0.3</subscript> filtration efficiencies with well-controlled air resistance (94.3 %, 163.4 Pa, 85 L/min), in contrast to the relatively low efficiency of only 80.0 % for normal PLA. During the application evaluation of outdoor air purification, excellent long-term filtering performance was demonstrated for the BG-PLA for up to 4 h (nearly 98.0 %, 53 Pa), whereas normal PLA exhibited a gradually declined filtration efficiency and an increased pressure drop. Moreover, the BG-PLA NFMs of increased electroactivity were ready to generate tribo-output currents as driven by respiratory vibrations, which enabled real-time monitoring of electrophysiological signals. This bio-inspired gradient strategy opens up promising pathways to engender biodegradable nanofibers of high surface activity and electroactivity, which has significant implications for intelligent protective membranes.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3336
Volume :
474
Database :
MEDLINE
Journal :
Journal of hazardous materials
Publication Type :
Academic Journal
Accession number :
38824775
Full Text :
https://doi.org/10.1016/j.jhazmat.2024.134781