Back to Search Start Over

Comparative transcriptome profile of embryos at different developmental stages derived from somatic cell nuclear transfer (SCNT) and in-vitro fertilization (IVF) in riverine buffalo (Bubalus bubalis).

Authors :
Kumar D
Tiwari M
Goel P
Singh MK
Selokar NL
Palta P
Source :
Veterinary research communications [Vet Res Commun] 2024 Aug; Vol. 48 (4), pp. 2457-2475. Date of Electronic Publication: 2024 Jun 03.
Publication Year :
2024

Abstract

Somatic cell nuclear transfer (SCNT) is a very important reproductive technology with many diverse applications, such as fast multiplication of elite animals, the production of transgenic animals and embryonic stem (ES) cells. However, low cloning efficiency, a low live birth rate and the abnormally high incidence of abnormalities in the offspring born are attributed to incomplete or aberrant nuclear reprogramming. In SCNT embryos, the aberrant expression pattern of the genes throughout embryonic development is responsible for the incomplete nuclear reprogramming. The present study was carried out to identify the differential gene expression (DEGs) profile and molecular pathways of the SCNT and IVF embryos at different developmental stages (2 cell, 8 cell and blastocyst stages). In the present study, 1164 (2 cell), 1004 (8 cell) and 530 (blastocyst stage) DEGs were identified in the SCNT embryos as compared to IVF embryos. In addition, several genes such as ZEB1, GDF1, HSF5, PDE3B, VIM, TNNC, HSD3B1, TAGLN, ITGA4 and AGMAT were affecting the development of SCNT embryos as compared to IVF embryos. Further, Gene Ontology (GO) and molecular pathways analysis suggested, SCNT embryos exhibit variations compared to their IVF counterparts and affected the development of embryos throughout the different developmental stages. Apart from this, q-PCR analysis of the GDF1, TMEM114, and IGSF22 genes were utilized to validate the RNA-seq data. These findings contribute valuable insights about the different genes and molecular pathways underlying SCNT embryo development and offer crucial information for improving SCNT efficiency.<br /> (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)

Details

Language :
English
ISSN :
1573-7446
Volume :
48
Issue :
4
Database :
MEDLINE
Journal :
Veterinary research communications
Publication Type :
Academic Journal
Accession number :
38829518
Full Text :
https://doi.org/10.1007/s11259-024-10419-8