Back to Search Start Over

Unraveling the determinants of antibiotic resistance evolution in farmland under fertilizations.

Authors :
Xu Y
Zhang D
Li H
Ye H
Bai M
Jiang G
Li X
Source :
Journal of hazardous materials [J Hazard Mater] 2024 Aug 05; Vol. 474, pp. 134802. Date of Electronic Publication: 2024 Jun 03.
Publication Year :
2024

Abstract

Organic fertilization is a major driver potentiating soil antibiotic resistance in farmland. However, it remains unclear how bacterial antibiotic resistance evolves in fertilized soils and even spreads to crops. Compared with no fertilizer and commercial fertilizer treatments, organic fertilizers markedly increased the abundance of soil antibiotic resistance genes (ARGs) but the relatively weaker transfer of resistance genes from soil to crops. The introduction of organic fertilizers enriches the soil with nutrients, driving indigenous microorganisms towards a K-strategy. The pH, EC, and nutrients as key drivers influenced the ARGs abundance. The neutral (pH 7.2), low salt (TDS 1.4 %) and mesotrophic (carbon content 3.54 g/L) habitats similar to the soil environment conditioned by organic fertilizers. These environmental conditions clearly prolonged the persistence of resistant plasmids, and facilitated their dissemination to massive conjugators soil microbiome but not to plant endophytes. This suggested that organic fertilizers inhibited the spread of ARGs to crops. Moreover, the composition of conjugators showed differential selection of resistant plasmids by endophytes under these conditions. This study sheds light on the evolution and dissemination of antibiotic resistance in farmlands and can aid in the development of antimicrobial resistance control strategies in agriculture.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3336
Volume :
474
Database :
MEDLINE
Journal :
Journal of hazardous materials
Publication Type :
Academic Journal
Accession number :
38838525
Full Text :
https://doi.org/10.1016/j.jhazmat.2024.134802