Back to Search Start Over

The obesogen bisphenol A promotes adipogenesis in canine adipose-derived stem cells: Potential implication in dog obesity.

Authors :
Park EJ
Lee S
Kim JY
Choi J
Lee YS
Park M
Jeon JH
Lee HJ
Source :
Chemosphere [Chemosphere] 2024 Aug; Vol. 362, pp. 142579. Date of Electronic Publication: 2024 Jun 10.
Publication Year :
2024

Abstract

The growing number of companion dogs has contributed to a rapidly growing market for pet products, including dog toys. However, little is known about the hazardous substances released from dog toys. This study aims to examine the potential presence of obesogens, a subset of endocrine-disrupting chemicals (EDCs) that are widely utilized as raw materials in the manufacture of dog toy components, and their effects on dog health. To achieve this, we adapted and employed a migration method typically used for children's products to simulate obesogen exposure in dogs through sucking or chewing toys. We demonstrated that out of various obesogens, bisphenol A (BPA) was released from dog toys into synthetic saliva, whereas phthalates and azo dyes were not detected in any of the leachates. Additionally, we found that BPA induced adipogenic differentiation in canine adipose-derived stem cells (cADSCs). Our RNA sequencing experiments revealed that BPA alters the adipogenesis-related gene signature in cADSCs by elevating the expression levels of ADIPOQ, PLIN1, PCK1, CIDEC, and FABP4. The associated transcriptional changes are involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which may contribute to the promotion of adipogenesis by BPA. Our findings suggest that companion dogs are at risk of BPA exposure, which may contribute to obesity in dogs. Therefore, the implementation of precautionary measures is crucial.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024. Published by Elsevier Ltd.)

Details

Language :
English
ISSN :
1879-1298
Volume :
362
Database :
MEDLINE
Journal :
Chemosphere
Publication Type :
Academic Journal
Accession number :
38866337
Full Text :
https://doi.org/10.1016/j.chemosphere.2024.142579