Back to Search
Start Over
Sustainable production of cellulosic biopolymers for enhanced smart food packaging: An up-to-date review.
- Source :
-
International journal of biological macromolecules [Int J Biol Macromol] 2024 Jul; Vol. 273 (Pt 2), pp. 133090. Date of Electronic Publication: 2024 Jun 13. - Publication Year :
- 2024
-
Abstract
- Biodegradable and sustainable food packaging (FP) materials have gained immense global importance to reduce plastic pollution and environmental impact. Therefore, this review focused on the recent advances in biopolymers based on cellulose derivatives for FP applications. Cellulose, an abundant and renewable biopolymer, and its various derivatives, namely cellulose acetate, cellulose sulphate, nanocellulose, carboxymethyl cellulose, and methylcellulose, are explored as promising substitutes for conventional plastic in FP. These reviews focused on the production, modification processes, and properties of cellulose derivatives and highlighted their potential for their application in FP. Finally, we reviewed the effects of incorporating cellulose derivatives into film in various aspects of packaging properties, including barrier, mechanical, thermal, preservation aspects, antimicrobial, and antioxidant properties. Overall, the findings suggest that cellulose derivatives have the potential to replace conventional plastics in food packaging applications. This can contribute to reducing plastic pollution and lessening the environmental impact of food packaging materials. The review likely provides insights into the current state of research and development in this field and underscores the significance of sustainable food packaging solutions.<br />Competing Interests: Declaration of competing interest The authors declare no conflict of interest.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-0003
- Volume :
- 273
- Issue :
- Pt 2
- Database :
- MEDLINE
- Journal :
- International journal of biological macromolecules
- Publication Type :
- Academic Journal
- Accession number :
- 38878920
- Full Text :
- https://doi.org/10.1016/j.ijbiomac.2024.133090