Back to Search
Start Over
Glucoselysine, a unique advanced glycation end-product of the polyol pathway and its association with vascular complications in type 2 diabetes.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 2024 Jul; Vol. 300 (7), pp. 107479. Date of Electronic Publication: 2024 Jun 13. - Publication Year :
- 2024
-
Abstract
- Glucoselysine (GL) is an unique advanced glycation end-product derived from fructose. The main source of fructose in vivo is the polyol pathway, and an increase in its activity leads to diabetic complications. Here, we aimed to demonstrate that GL can serve as an indicator of the polyol pathway activity. Additionally, we propose a novel approach for detecting GL in peripheral blood samples using liquid chromatography-tandem mass spectrometry and evaluate its clinical usefulness. We successfully circumvent interference from fructoselysine, which shares the same molecular weight as GL, by performing ultrafiltration and hydrolysis without reduction, successfully generating adequate peaks for quantification in serum. Furthermore, using immortalized aldose reductase KO mouse Schwann cells, we demonstrate that GL reflects the downstream activity of the polyol pathway and that GL produced intracellularly is released into the extracellular space. Clinical studies reveal that GL levels in patients with type 2 diabetes are significantly higher than those in healthy participants, while N <superscript>δ</superscript> -(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1) levels are significantly lower. Both GL and MG-H1 show higher values among patients with vascular complications; however, GL varies more markedly than MG-H1 as well as hemoglobin A1c, fasting plasma glucose, and estimated glomerular filtration rate. Furthermore, GL remains consistently stable under various existing drug treatments for type 2 diabetes, whereas MG-H1 is impacted. To the best of our knowledge, we provide important insights in predicting diabetic complications caused by enhanced polyol pathway activity via assessment of GL levels in peripheral blood samples from patients.<br />Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article.<br /> (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Subjects :
- Humans
Animals
Mice
Male
Middle Aged
Female
Lysine metabolism
Ornithine metabolism
Ornithine blood
Ornithine analogs & derivatives
Aldehyde Reductase metabolism
Diabetic Angiopathies metabolism
Diabetic Angiopathies blood
Polymers chemistry
Aged
Mice, Knockout
Imidazoles
Diabetes Mellitus, Type 2 metabolism
Diabetes Mellitus, Type 2 blood
Diabetes Mellitus, Type 2 complications
Glycation End Products, Advanced metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1083-351X
- Volume :
- 300
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 38879006
- Full Text :
- https://doi.org/10.1016/j.jbc.2024.107479