Back to Search
Start Over
An energy landscape approach reveals the potential key bacteria contributing to the development of inflammatory bowel disease.
- Source :
-
PloS one [PLoS One] 2024 Jun 17; Vol. 19 (6), pp. e0302151. Date of Electronic Publication: 2024 Jun 17 (Print Publication: 2024). - Publication Year :
- 2024
-
Abstract
- The dysbiosis of microbiota has been reported to be associated with numerous human pathophysiological processes, including inflammatory bowel disease (IBD). With advancements in high-throughput sequencing, various methods have been developed to study the alteration of microbiota in the development and progression of diseases. However, a suitable approach to assess the global stability of the microbiota in disease states through time-series microbiome data is yet to be established. In this study, we have introduced a novel Energy Landscape construction method, which incorporates the Latent Dirichlet Allocation (LDA) model and the pairwise Maximum Entropy (MaxEnt) model for their complementary advantages, and demonstrate its utility by applying it to an IBD time-series dataset. Through this approach, we obtained the microbial assemblages' energy profile of the whole microbiota under the IBD condition and uncovered the hidden stable stages of microbiota structure during the disease development with time-series microbiome data. The Bacteroides-dominated assemblages presenting in multiple stable states suggest the potential contribution of Bacteroides and interactions with other microbial genera, like Alistipes, and Faecalibacterium, to the development of IBD. Our proposed method provides a novel and insightful tool for understanding the alteration and stability of the microbiota under disease states and offers a more holistic view of the complex dynamics at play in microbiota-mediated diseases.<br />Competing Interests: The authors have declared that no competing interests exist.<br /> (Copyright: © 2024 Zhang, Nakaoka. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 19
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 38885178
- Full Text :
- https://doi.org/10.1371/journal.pone.0302151