Back to Search Start Over

Predicting drought stress under climate change in the Southern Central Highlands of Vietnam.

Authors :
Thanh PN
Le Van T
Thi XAT
Hai AN
Le Cong C
Gagnon AS
Pham NT
Anh DT
Dinh VN
Source :
Environmental monitoring and assessment [Environ Monit Assess] 2024 Jun 20; Vol. 196 (7), pp. 636. Date of Electronic Publication: 2024 Jun 20.
Publication Year :
2024

Abstract

In the Southern Central Highlands of Vietnam, droughts occur more frequently, causing significant damage and impacting the region's socio-economic development. During the dry season, rivers, streams, and reservoirs often face limited water availability, exacerbated in recent years by increasing drought severity. Recognizing the escalating severity of droughts, the study offers a novel contribution by conducting a comprehensive analysis of surface water resource distribution in Lam Dong province, focusing on assessing water demand for agricultural production, a crucial factor in ensuring sustainable crop growth. Two scenarios, Current-2020 (SC1) and Climate Change-2025 (SC2), are simulated, with SC2 based on climate change and sea level rise scenarios provided by the Ministry of Natural Resources and Environment (MONRE). These scenarios are integrated into the MIKE-NAM and MIKE-HYDRO basin models, allowing for a thorough assessment of the water balance of Lam Dong province. Furthermore, the study utilizes the Keetch-Byram Drought Index (KBDI) to measure drought severity, revealing prevalent dry and moderately droughty conditions in highland districts with rainfall frequency ranging from 50 to 85%. Severe drought conditions occur with a rainfall frequency of 95%, indicating an increased frequency and geographic scope of severe droughts. Additionally, the study highlights that under abnormally dry conditions, water demand for the winter-spring crop is consistently met at 100%, decreasing to 85%, 80%, and less than 75% for moderate, severe, and extreme droughts, respectively. These findings offer insights into future drought conditions in the Lam Dong province and their potential impact on irrigation capacity, crucial for adaptation strategies.<br /> (© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)

Details

Language :
English
ISSN :
1573-2959
Volume :
196
Issue :
7
Database :
MEDLINE
Journal :
Environmental monitoring and assessment
Publication Type :
Academic Journal
Accession number :
38902424
Full Text :
https://doi.org/10.1007/s10661-024-12798-6