Back to Search
Start Over
Structure Factors for Hot Neutron Matter from Ab Initio Lattice Simulations with High-Fidelity Chiral Interactions.
- Source :
-
Physical review letters [Phys Rev Lett] 2024 Jun 07; Vol. 132 (23), pp. 232502. - Publication Year :
- 2024
-
Abstract
- We present the first ab initio lattice calculations of spin and density correlations in hot neutron matter using high-fidelity interactions at next-to-next-to-next-to-leading order in chiral effective field theory. These correlations have a large impact on neutrino heating and shock revival in core-collapse supernovae and are encapsulated in functions called structure factors. Unfortunately, calculations of structure factors using high-fidelity chiral interactions were well out of reach using existing computational methods. In this Letter, we solve the problem using a computational approach called the rank-one operator (RO) method. The RO method is a general technique with broad applications to simulations of fermionic many-body systems. It solves the problem of exponential scaling of computational effort when using perturbation theory for higher-body operators and higher-order corrections. Using the RO method, we compute the vector and axial static structure factors for hot neutron matter as a function of temperature and density. The ab initio lattice results are in good agreement with virial expansion calculations at low densities but are more reliable at higher densities. Random phase approximation codes used to estimate neutrino opacity in core-collapse supernovae simulations can now be calibrated with ab initio lattice calculations.
Details
- Language :
- English
- ISSN :
- 1079-7114
- Volume :
- 132
- Issue :
- 23
- Database :
- MEDLINE
- Journal :
- Physical review letters
- Publication Type :
- Academic Journal
- Accession number :
- 38905669
- Full Text :
- https://doi.org/10.1103/PhysRevLett.132.232502