Back to Search Start Over

Hippocampal-dependent navigation in head-fixed mice using a floating real-world environment.

Authors :
Stuart SA
Palacios-Filardo J
Domanski A
Udakis M
Duguid I
Jones MW
Mellor JR
Source :
Scientific reports [Sci Rep] 2024 Jun 21; Vol. 14 (1), pp. 14315. Date of Electronic Publication: 2024 Jun 21.
Publication Year :
2024

Abstract

Head-fixation of mice enables high-resolution monitoring of neuronal activity coupled with precise control of environmental stimuli. Virtual reality can be used to emulate the visual experience of movement during head fixation, but a low inertia floating real-world environment (mobile homecage, MHC) has the potential to engage more sensory modalities and provide a richer experimental environment for complex behavioral tasks. However, it is not known whether mice react to this adapted environment in a similar manner to real environments, or whether the MHC can be used to implement validated, maze-based behavioral tasks. Here, we show that hippocampal place cell representations are intact in the MHC and that the system allows relatively long (20 min) whole-cell patch clamp recordings from dorsal CA1 pyramidal neurons, revealing sub-threshold membrane potential dynamics. Furthermore, mice learn the location of a liquid reward within an adapted T-maze guided by 2-dimensional spatial navigation cues and relearn the location when spatial contingencies are reversed. Bilateral infusions of scopolamine show that this learning is hippocampus-dependent and requires intact cholinergic signalling. Therefore, we characterize the MHC system as an experimental tool to study sub-threshold membrane potential dynamics that underpin complex navigation behaviors.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
2045-2322
Volume :
14
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
38906952
Full Text :
https://doi.org/10.1038/s41598-024-64807-w