Back to Search
Start Over
Maternal TGF-β ligand Panda breaks the radial symmetry of the sea urchin embryo by antagonizing the Nodal type II receptor ACVRII.
- Source :
-
PLoS biology [PLoS Biol] 2024 Jun 24; Vol. 22 (6), pp. e3002701. Date of Electronic Publication: 2024 Jun 24 (Print Publication: 2024). - Publication Year :
- 2024
-
Abstract
- In the highly regulative embryo of the sea urchin Paracentrotus lividus, establishment of the dorsal-ventral (D/V) axis critically depends on the zygotic expression of the TGF-β nodal in the ventral ectoderm. nodal expression is first induced ubiquitously in the 32-cell embryo and becomes progressively restricted to the presumptive ventral ectoderm by the early blastula stage. This early spatial restriction of nodal expression is independent of Lefty, and instead relies on the activity of Panda, a maternally expressed TGF-β ligand related to Lefty and Inhibins, which is required maternally for D/V axis specification. However, the mechanism by which Panda restricts the early nodal expression has remained enigmatic and it is not known if Panda works like a BMP ligand by opposing Nodal and antagonizing Smad2/3 signaling, or if it works like Lefty by sequestering an essential component of the Nodal signaling pathway. In this study, we report that Panda functions as an antagonist of the TGF-β type II receptor ACVRII (Activin receptor type II), which is the only type II receptor for Nodal signaling in the sea urchin and is also a type II receptor for BMP ligands. Inhibiting translation of acvrII mRNA disrupted D/V patterning across all 3 germ layers and caused acvrII morphants to develop with a typical Nodal loss-of-function phenotype. In contrast, embryos overexpressing acvrII displayed strong ectopic Smad1/5/8 signaling at blastula stages and developed as dorsalized larvae, a phenotype very similar to that caused by over activation of BMP signaling. Remarkably, embryos co-injected with acvrII mRNA and panda mRNA did not show ectopic Smad1/5/8 signaling and developed with a largely normal dorsal-ventral polarity. Furthermore, using an axis induction assay, we found that Panda blocks the ability of ACVRII to orient the D/V axis when overexpressed locally. Using co-immunoprecipitation, we showed that Panda physically interacts with ACVRII, as well as with the Nodal co-receptor Cripto, and with TBR3 (Betaglycan), which is a non-signaling receptor for Inhibins in mammals. At the molecular level, we have traced back the antagonistic activity of Panda to the presence of a single proline residue, conserved with all the Lefty factors, in the ACVRII binding motif of Panda, instead of a serine as in most of TGF-β ligands. Conversion of this proline to a serine converted Panda from an antagonist that opposed Nodal signaling and promoted dorsalization to an agonist that promoted Nodal signaling and triggered ventralization when overexpressed. Finally, using phylogenomics, we analyzed the emergence of the agonist and antagonist form of Panda in the course of evolution. Our data are consistent with the idea that the presence of a serine at that position, like in most TGF-β, was the ancestral condition and that the initial function of Panda was possibly in promoting and not in antagonizing Nodal signaling. These results highlight the existence of key functional and structural elements conserved between Panda and Lefty, allow to draw an intriguing parallel between sea urchin Panda and mammalian Inhibin α and raise the unexpected possibility that the original function of Panda may have been in activation of the Nodal pathway rather than in its inhibition.<br />Competing Interests: The authors have declared that no competing interests exist.<br /> (Copyright: © 2024 Viswanathan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Subjects :
- Animals
Ligands
Signal Transduction
Transforming Growth Factor beta metabolism
Body Patterning genetics
Paracentrotus embryology
Paracentrotus metabolism
Paracentrotus genetics
Activin Receptors, Type II metabolism
Activin Receptors, Type II genetics
Nodal Protein metabolism
Nodal Protein genetics
Embryo, Nonmammalian metabolism
Gene Expression Regulation, Developmental
Subjects
Details
- Language :
- English
- ISSN :
- 1545-7885
- Volume :
- 22
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- PLoS biology
- Publication Type :
- Academic Journal
- Accession number :
- 38913712
- Full Text :
- https://doi.org/10.1371/journal.pbio.3002701