Back to Search Start Over

A two-phase flow model simulating water penetration into pharmaceutical tablets.

Authors :
Salish K
Thool P
Qin Y
Yawman PD
Zhang S
Mao C
Source :
International journal of pharmaceutics [Int J Pharm] 2024 Jul 20; Vol. 660, pp. 124383. Date of Electronic Publication: 2024 Jun 24.
Publication Year :
2024

Abstract

The purpose of the study is introduce a two-phase flow model to simulate water penetration into pharmaceutical tablets. This model was built by integrating Darcy's law with the continuity principle, on the premise that water penetration was driven by capillary actions. Notably, this model concerned both the ingress of water (wetting phase) and simultaneous displacement of air (non-wetting phase). Due to the interference of the two fluids, the relative permeability and capillary pressure vary during water penetration. Evolution of these parameters was incorporated in the model. Calibration of the model by water penetration experiments of the microcrystalline cellulose (MCC) tablet yielded an average pore radius of 42 nm. This derived result was corroborated by FIB-SEM analysis revealing the presence of extensive microporosity within MCC particles with an average radius of ∼30 nm. Further validation was achieved through close resemblance between the simulated and experimental water penetration profiles of MCC tablets possessing different porosities. Overall, this study underscored the advantage of the two-phase flow model over single-phase flow models, by capturing the dependence of permeability and capillary pressure on water saturation. Therefore it holds promise for an enhanced description of water penetration into tablets.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3476
Volume :
660
Database :
MEDLINE
Journal :
International journal of pharmaceutics
Publication Type :
Academic Journal
Accession number :
38925240
Full Text :
https://doi.org/10.1016/j.ijpharm.2024.124383