Back to Search Start Over

Investigation of Viscoelastic Guided Wave Properties in Anisotropic Laminated Composites Using a Legendre Orthogonal Polynomials Expansion-Assisted Viscoelastodynamic Model.

Authors :
Liu H
Huang Z
Yin Z
Sun M
Bo L
Li T
Tian Z
Source :
Polymers [Polymers (Basel)] 2024 Jun 10; Vol. 16 (12). Date of Electronic Publication: 2024 Jun 10.
Publication Year :
2024

Abstract

This study investigates viscoelastic guided wave properties (e.g., complex-wavenumber-, phase-velocity-, and attenuation-frequency relations) for multiple modes, including different orders of antisymmetric, symmetric, and shear horizontal modes in viscoelastic anisotropic laminated composites. To obtain those frequency-dependent relations, a guided wave characteristic equation is formulated based on a Legendre orthogonal polynomials expansion (LOPE)-assisted viscoelastodynamic model, which fuses the hysteretic viscoelastic model-based wave dynamics and the LOPE-based mode shape approximation. Then, the complex-wavenumber-frequency solutions are obtained by solving the characteristic equation using an improved root-finding algorithm, which leverages coefficient matrix determinant ratios and our proposed local tracking windows. To trace the solutions on the dispersion curves of different wave modes and avoid curve-tracing misalignment in regions with phase-velocity curve crossing, we presented a curve-tracing strategy considering wave attenuation. With the LOPE-assisted viscoelastodynamic model, the effects of material viscosity and fiber orientation on different guided wave modes are investigated for unidirectional carbon-fiber-reinforced composites. The results show that the viscosity in the hysteresis model mainly affects the frequency-dependent attenuation of viscoelastic guided waves, while the fiber orientation influences both the phase-velocity and attenuation curves. We expect the theoretical work in this study to facilitate the development of guided wave-based techniques for the NDT and SHM of viscoelastic anisotropic laminated composites.

Details

Language :
English
ISSN :
2073-4360
Volume :
16
Issue :
12
Database :
MEDLINE
Journal :
Polymers
Publication Type :
Academic Journal
Accession number :
38931988
Full Text :
https://doi.org/10.3390/polym16121638