Back to Search
Start Over
A fast visual onsite method for detection and quantitation of food additives using an engineered metal nanohybrid-based catalyst.
- Source :
-
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy [Spectrochim Acta A Mol Biomol Spectrosc] 2024 Nov 15; Vol. 321, pp. 124703. Date of Electronic Publication: 2024 Jun 21. - Publication Year :
- 2024
-
Abstract
- Unsafe food additives pose a significant threat to global health, especially in developing countries. Many existing methods rely on clean laboratories, complicated optics equipment, trained personnel and lengthy detection time, which are not suitable for onsite food safety inspections in emergency situations, peculiarly in impoverished areas. In this paper, a fast and visual onsite method is designed for the detection and quantification of additives in food safety by engineering a nanohybrid (MoS <subscript>2</subscript> /SDBS/Cu-CuFe <subscript>2</subscript> O <subscript>4</subscript> )-based catalysis. Interestingly, the nanohybrid presents peroxidase-like mimetic activity toward the substrate containing 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H <subscript>2</subscript> O <subscript>2</subscript> ), which are then integrated simply into a detection kit. The blue oxidated TMB in this kit can be converted completely to colorless by some bio-molecule additives in commercial food, such as glutathione (GSH), cysteine (Cys), and ascorbic acid (AA). Remarkably, this process takes just less than 2 min and the detection limits are 2.8 nM, 5.5 nM and 47 nM, respectively. These results show excellent repeatability with a statistical analysis with (*P < 0.05) over 30 tests. Next, the images of the color changes can be captured clearly using a smartphone by red-green-blue (RGB) channels, which provides an opportunity for the development of field-operation device. Additionally, our approach is applied to some targets-indicative foods, showing a recovery range between 95.8 % and 104.2 %, offering an attractive and promising pathway for future practical food safety inspection applications. More importantly, this method can easily be extended to the detection of reducing substances in other analytical fields.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-3557
- Volume :
- 321
- Database :
- MEDLINE
- Journal :
- Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
- Publication Type :
- Academic Journal
- Accession number :
- 38936206
- Full Text :
- https://doi.org/10.1016/j.saa.2024.124703