Back to Search
Start Over
Moderate intensity aerobic exercise alleviates motor deficits in 6-OHDA lesioned rats and reduces serum levels of biomarkers of Parkinson's disease severity without recovery of striatal dopamine or tyrosine hydroxylase.
- Source :
-
Experimental neurology [Exp Neurol] 2024 Sep; Vol. 379, pp. 114875. Date of Electronic Publication: 2024 Jun 27. - Publication Year :
- 2024
-
Abstract
- Alleviation of motor impairment by aerobic exercise (AE) in Parkinson's disease (PD) patients points to activation of neurobiological mechanisms that may be targetable by therapeutic approaches. However, evidence for AE-related recovery of striatal dopamine (DA) signaling or tyrosine hydroxylase (TH) loss has been inconsistent in rodent studies. This ambiguity may be related to the timing of AE intervention in relation to the status of nigrostriatal neuron loss. Here, we replicated human PD at diagnosis by establishing motor impairment with >80% striatal DA and TH loss prior to initiating AE, and assessed its potential to alleviate motor decline and restore DA and TH loss. We also evaluated if serum levels of neurofilament light (NfL) and glial fibrillary acidic protein (GFAP), biomarkers of human PD severity, changed in response to AE. 6-hydroxydopamine (6-OHDA) was infused unilaterally into rat medial forebrain bundle to induce progressive nigrostriatal neuron loss over 28 days. Moderate intensity AE (3× per week, 40 min/session), began 8-10 days post-lesion following establishment of impaired forelimb use. Striatal tissue DA, TH protein and mRNA, and serum levels of NfL/GFAP were determined 3-wks after AE began. Despite severe striatal DA depletion at AE initiation, forelimb use deficits and hypokinesia onset were alleviated by AE, without recovery of striatal DA or TH protein loss, but reduced NfL and GFAP serum levels. This proof-of-concept study shows AE alleviates motor impairment when initiated with >80% striatal DA loss without obligate recovery of striatal DA or TH protein. Moreover, the AE-related reduction of NfL and GFAP serum levels may serve as objective blood-based biomarkers of AE efficacy.<br />Competing Interests: Declaration of competing interest None.<br /> (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Subjects :
- Animals
Rats
Male
Glial Fibrillary Acidic Protein metabolism
Glial Fibrillary Acidic Protein blood
Severity of Illness Index
Neurofilament Proteins blood
Neurofilament Proteins metabolism
Parkinson Disease blood
Exercise Therapy methods
Tyrosine 3-Monooxygenase metabolism
Oxidopamine toxicity
Corpus Striatum metabolism
Physical Conditioning, Animal physiology
Physical Conditioning, Animal methods
Biomarkers blood
Dopamine metabolism
Dopamine blood
Rats, Sprague-Dawley
Subjects
Details
- Language :
- English
- ISSN :
- 1090-2430
- Volume :
- 379
- Database :
- MEDLINE
- Journal :
- Experimental neurology
- Publication Type :
- Academic Journal
- Accession number :
- 38944332
- Full Text :
- https://doi.org/10.1016/j.expneurol.2024.114875