Back to Search Start Over

Dimethyl fumarate ameliorates oxidative stress-induced acute kidney injury after traumatic brain injury by activating Keap1-Nrf2/HO-1 signaling pathway.

Authors :
Gao MZ
Zeng JY
Chen XJ
Shi L
Hong FY
Lin M
Luo JW
Chen H
Source :
Heliyon [Heliyon] 2024 Jun 04; Vol. 10 (11), pp. e32377. Date of Electronic Publication: 2024 Jun 04 (Print Publication: 2024).
Publication Year :
2024

Abstract

Acute kidney injury (AKI) frequently emerges as a consequential non-neurological sequel to traumatic brain injury (TBI), significantly contributing to heightened mortality risks. The intricate interplay of oxidative stress in the pathophysiology of TBI underscores the centrality of the Keap1-Nrf2/HO-1 signaling pathway as a pivotal regulator in this context. This study endeavors to elucidate the involvement of the Keap1-Nrf2/HO-1 pathway in modulating oxidative stress in AKI subsequent to TBI and concurrently explore the therapeutic efficacy of dimethyl fumarate (DMF). A rat model of TBI was established via the Feeney free-fall method, incorporating interventions with varying concentrations of DMF. Assessment of renal function ensued through measurements of serum creatinine and neutrophil gelatinase-associated lipocalin. Morphological evaluation of renal pathology was conducted employing quantitative hematoxylin and eosin staining. The inflammatory response was scrutinized by quantifying interleukin (IL)-6, IL-1β, and tumor necrosis factor-α levels. Oxidative stress levels were discerned through quantification of malondialdehyde and superoxide dismutase. The apoptotic cascade was examined via the terminal deoxynucleotidyl transferase dUTP deletion labeling assay. Western blotting provided insights into the expression dynamics of proteins affiliated with the Keap1-Nrf2/HO-1 pathway and apoptosis. The findings revealed severe kidney injury, heightened oxidative stress, inflammation, and apoptosis in the traumatic brain injury model. Treatment with DMF effectively reversed these changes, alleviating oxidative stress by activating the Keap1-Nrf2/HO-1 signaling pathway, ultimately conferring protection against AKI. Activating Keap1-Nrf2/HO-1 signaling pathway may be a potential therapeutic strategy for attenuating oxidative stress-induced AKI after TBI.<br />Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (© 2024 The Author(s).)

Details

Language :
English
ISSN :
2405-8440
Volume :
10
Issue :
11
Database :
MEDLINE
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
38947486
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e32377