Back to Search
Start Over
Quantitative reagent monitoring in paper-based electrochemical rapid diagnostic tests.
- Source :
-
Lab on a chip [Lab Chip] 2024 Jul 23; Vol. 24 (15), pp. 3651-3657. Date of Electronic Publication: 2024 Jul 23. - Publication Year :
- 2024
-
Abstract
- Paper-based rapid diagnostic tests (RDTs) are an essential component of modern healthcare, particularly for the management of infectious diseases. Despite their utility, these capillary-driven RDTs are compromised by high failure rates, primarily caused by user error. This limits their utility in complex assays that require multiple user operations. Here, we demonstrate how this issue can be directly addressed through continuous electrochemical monitoring of reagent flow inside an RDT using embedded graphenized electrodes. Our method relies on applying short voltage pulses and measuring variations in capacitive discharge currents to precisely determine the flow times of injected samples and reagents. This information is reported to the user, guiding them through the testing process, highlighting failure cases and ultimately decreasing errors. Significantly, the same electrodes can be used to quantify electrochemical signals from immunoassays, providing an integrated solution for both monitoring assays and reporting results. We demonstrate the applicability of this approach in a serology test for the detection of anti-SARS-CoV-2 IgG in clinical serum samples. This method paves the way towards "smart" RDTs able to continuously monitor the testing process and improve the robustness of point-of-care diagnostics.
- Subjects :
- Humans
Immunoglobulin G blood
Immunoglobulin G analysis
Antibodies, Viral blood
Antibodies, Viral immunology
Electrodes
Immunoassay instrumentation
Immunoassay methods
Rapid Diagnostic Tests
Paper
Electrochemical Techniques instrumentation
Electrochemical Techniques methods
SARS-CoV-2 isolation & purification
SARS-CoV-2 immunology
COVID-19 diagnosis
COVID-19 blood
COVID-19 virology
Subjects
Details
- Language :
- English
- ISSN :
- 1473-0189
- Volume :
- 24
- Issue :
- 15
- Database :
- MEDLINE
- Journal :
- Lab on a chip
- Publication Type :
- Academic Journal
- Accession number :
- 38952211
- Full Text :
- https://doi.org/10.1039/d4lc00390j