Back to Search
Start Over
Molecular regulation of rapeseed protein for improving its techno-functional properties.
- Source :
-
International journal of biological macromolecules [Int J Biol Macromol] 2024 Aug; Vol. 275 (Pt 1), pp. 133441. Date of Electronic Publication: 2024 Jun 30. - Publication Year :
- 2024
-
Abstract
- To improve the techno-functional properties of rapeseed protein (RP), this work tried to regulate the molecular structure of RP via inducing the co-assembly of RP with zein and whey protein (WP). The results showed that WP and zein mainly regulate the folding process of RP through hydrophobic and disulfide bonds, thereby altering the structural conformation and forming stable complex RP (CRP). WP addition not only increased the number of surface charges and hydrophilicity of proteins, but also decreased their sizes, improved the water solubility, as well as the availability of active groups. These changes significantly increased the foaming capacity (from 60 % to 147 %) and in vitro gastric digestion rate (from 10 % to 60 %) of CRP. Besides, WP also contributed to the formation of gels and the regulation of their textural profiles. Comparatively, zein improved the hydrophobicity of CRP and balanced degree of intermolecular forces, which effectively increased the emulsifying activity index of CRP from 22 m <superscript>2</superscript> /g to 90 m <superscript>2</superscript> /g. Zein decreased the hardness, springiness and water-holding capacity of gel, but increased its gumminess and chewiness. Overall, both WP and zein effectively changed the structural conformation of RP, and improved its techno-functional properties, which provides an effective strategy to modify protein.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-0003
- Volume :
- 275
- Issue :
- Pt 1
- Database :
- MEDLINE
- Journal :
- International journal of biological macromolecules
- Publication Type :
- Academic Journal
- Accession number :
- 38955302
- Full Text :
- https://doi.org/10.1016/j.ijbiomac.2024.133441