Back to Search Start Over

A change in metal cation switches selectivity of a phospholipid sensor from phosphatidic acid to phosphatidylserine.

Authors :
Butler SM
Ercan B
You J
Schulz LP
Jolliffe KA
Source :
Organic & biomolecular chemistry [Org Biomol Chem] 2024 Jul 17; Vol. 22 (28), pp. 5843-5849. Date of Electronic Publication: 2024 Jul 17.
Publication Year :
2024

Abstract

Phosphatidic acid and phosphatidylserine are anionic phospholipids with emerging signalling roles in cells. Determination of how phosphatidic acid and phosphatidylserine change location and quantity in cells over time requires selective fluorescent sensors that can distinguish these two anionic phospholipids. However, the design of such synthetic sensors that can selectively bind and respond to a single phospholipid within the complex membrane milieu remains challenging. In this work, we present a simple and robust strategy to control the selectivity of synthetic sensors for phosphatidic acid and phosphatidylserine. By changing the coordination metal of a dipicolylamine (DPA) ligand from Zn(II) to Ni(II) on the same synthetic sensor with a peptide backbone, we achieve a complete switch in selectivity from phosphatidic acid to phosphatidylserine in model lipid membranes. Furthermore, this strategy was largely unaffected by the choice and the position of the fluorophores. We envision that this strategy will provide a platform for the rational design of targeted synthetic phospholipid sensors to probe plasma and intracellular membranes.

Details

Language :
English
ISSN :
1477-0539
Volume :
22
Issue :
28
Database :
MEDLINE
Journal :
Organic & biomolecular chemistry
Publication Type :
Academic Journal
Accession number :
38957899
Full Text :
https://doi.org/10.1039/d4ob00418c