Back to Search
Start Over
Ultrafast Hot Exciton Nonadiabatic Excited-State Dynamics in Green Fluorescent Protein Chromophore Analogue.
- Source :
-
The journal of physical chemistry. B [J Phys Chem B] 2024 Jul 18; Vol. 128 (28), pp. 6786-6796. Date of Electronic Publication: 2024 Jul 03. - Publication Year :
- 2024
-
Abstract
- The ultrafast high-energy nonadiabatic excited-state dynamics of the benzylidenedimethylimidazolinone chromophore dimer has been investigated using an electronic structure method coupled with on-the-fly quantitative wave function analysis to gain insight into the photophysics of hot excitons in biological systems. The dynamical simulation provides a rationalization of the behavior of the exciton in a dimer after the photoabsorption of light to higher-energy states. The results suggest that hot exciton localization within the manifold of excited states is caused by the hindrance of torsional rotation due to imidazolinone (I) or phenolate (P) bonds i.e., Φ <subscript>I</subscript> - or Φ <subscript>P</subscript> -dihedral rotation, in the monomeric units of a dimer. This hindrance arises due to weak π-π stacking interaction in the dimer, resulting in an energetically uphill excited-state barrier for Φ <subscript>I</subscript> - and Φ <subscript>P</subscript> -twisted rotation, impeding the isomerization process in the chromophore. Thus, this study highlights the potential impact of the weak π-π interaction in regulating the photodynamics of the green fluorescent protein chromophore derivatives.
Details
- Language :
- English
- ISSN :
- 1520-5207
- Volume :
- 128
- Issue :
- 28
- Database :
- MEDLINE
- Journal :
- The journal of physical chemistry. B
- Publication Type :
- Academic Journal
- Accession number :
- 38959128
- Full Text :
- https://doi.org/10.1021/acs.jpcb.4c02733