Back to Search
Start Over
A suicidal and extensively disordered luciferase with a bright luminescence.
- Source :
-
Protein science : a publication of the Protein Society [Protein Sci] 2024 Aug; Vol. 33 (8), pp. e5115. - Publication Year :
- 2024
-
Abstract
- Gaussia luciferase (GLuc) is one of the most luminescent luciferases known and is widely used as a reporter in biochemistry and cell biology. During catalysis, GLuc undergoes inactivation by irreversible covalent modification. The mechanism by which GLuc generates luminescence and how it becomes inactivated are however not known. Here, we show that GLuc unlike other enzymes has an extensively disordered structure with a minimal hydrophobic core and no apparent binding pocket for the main substrate, coelenterazine. From an alanine scan, we identified two Arg residues required for light production. These residues separated with an average of about 22 Å and a major structural rearrangement is required if they are to interact with the substrate simultaneously. We furthermore show that in addition to coelenterazine, GLuc also can oxidize furimazine, however, in this case without production of light. Both substrates result in the formation of adducts with the enzyme, which eventually leads to enzyme inactivation. Our results demonstrate that a rigid protein structure and substrate-binding site are no prerequisites for high enzymatic activity and specificity. In addition to the increased understanding of enzymes in general, the findings will facilitate future improvement of GLuc as a reporter luciferase.<br /> (© 2024 The Author(s). Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.)
- Subjects :
- Animals
Luminescence
Copepoda enzymology
Models, Molecular
Imidazoles chemistry
Imidazoles metabolism
Intrinsically Disordered Proteins chemistry
Intrinsically Disordered Proteins metabolism
Pyrazines chemistry
Pyrazines metabolism
Luciferases chemistry
Luciferases metabolism
Luciferases genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1469-896X
- Volume :
- 33
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Protein science : a publication of the Protein Society
- Publication Type :
- Academic Journal
- Accession number :
- 39023083
- Full Text :
- https://doi.org/10.1002/pro.5115