Back to Search Start Over

Artificial antibody-antigen-directed immobilization of α-amylase to hydrolyze starch for cascade reduction of 2-nitro-4-methylphenol to 2-amino-4-methylphenol.

Authors :
Guo M
Guo S
Ji Z
Chao H
Tian J
Gu D
Yang Y
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Oct; Vol. 277 (Pt 1), pp. 134116. Date of Electronic Publication: 2024 Jul 23.
Publication Year :
2024

Abstract

Nitrophenol is a hazardous substance that poses a threat to the environment and human health, and its treatment has attracted widespread attention. The purpose of this study is to establish an environmentally friendly α-amylase system for the hydrolysis of starch to reduce nitrophenol to aminophenol through cascade reactions. The α-amylase system was obtained through artificial antibody-antigen-directed immobilization, including the synthesis of artificial antibodies, synthesis of artificial antigens, and affinity assembly. In this process, catechol and protocatechuic aldehyde were used to prepare artificial antibodies and artificial antigens respectively through polymerization and Schiff base reactions. Then, artificial antibodies captured the catechol in the artificial antigen structure to form immobilized α-amylases. Compared with free α-amylase, the immobilized α-amylase showed a good reusability and excellent regenerative ability. Subsequently, the immobilized α-amylase were used in the reaction of catalyzing starch hydrolysis to synthesize 2-amino-4-methylphenol, and the yield of 2-amino-4-methylphenol was 58.88 ± 0.19 %. After 5 consecutive catalytic reactions, a yield of 47.61 ± 1.27 % can still be achieved.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
277
Issue :
Pt 1
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
39053827
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.134116