Back to Search Start Over

Disruption of BACH1 Protects AC16 Cardiomyocytes Against Hypoxia/Reoxygenation-Evoked Injury by Diminishing CDKN3 Transcription.

Authors :
Li Y
Zhou Y
Pei H
Li
Source :
Cardiovascular toxicology [Cardiovasc Toxicol] 2024 Oct; Vol. 24 (10), pp. 1105-1115. Date of Electronic Publication: 2024 Jul 26.
Publication Year :
2024

Abstract

Reperfusion after myocardial infarction (MI) can lead to myocardial ischemia/reperfusion (I/R) damage. The transcription factor (TF) broad-complex, tramtrack, and bric-a-brac (BTB) and cap'n'collar (CNC) homology 1 (BACH1) is implicated in the injury. However, the downstream mechanisms of BACH1 in affecting myocardial hypoxia/reoxygenation (H/R) damage are still fully understood. AC16 cells were stimulated with H/R conditions to model cardiomyocytes under H/R. mRNA analysis was performed by quantitative real-time PCR. Protein levels were gauged by immunoblot analysis. The effect of BACH1/cyclin-dependent kinase inhibitor 3 (CDKN3) on H/R-evoked injury was assessed by measuring cell viability via Cell Counting Kit-8 (CCK-8), apoptosis (flow cytometry and caspase 3 activity), ferroptosis via Fe <superscript>2+</superscript> , glutathione (GSH), reactive oxygen species (ROS) and malondialdehyde (MDA) markers and inflammation cytokines interleukin-1beta (IL-1β) and tumor necrosis factor alpha (TNF-α). The BACH1/CDKN3 relationship was examined by chromatin immunoprecipitation (ChIP) experiment and luciferase assay. BACH1 was increased in MI serum and H/R-stimulated AC16 cardiomyocytes. Functionally, disruption of BACH1 mitigated H/R-evoked in vitro apoptosis, ferroptosis and inflammation of AC16 cardiomyocytes. Mechanistically, BACH1 activated CDKN3 transcription and enhanced CDKN3 protein expression in AC16 cardiomyocytes. Our rescue experiments validated that BACH1 disruption attenuated H/R-evoked AC16 cardiomyocyte apoptosis, ferroptosis and inflammation by downregulating CDKN3. Additionally, BACH1 disruption could activate the adenosine monophosphate-activated protein kinase (AMPK) signaling by downregulating CDKN3 in H/R-stimulated AC16 cardiomyocytes. Our study demonstrates that BACH1 activates CDKN3 transcription to induce H/R-evoked damage of AC16 cardiomyocytes partially via AMPK signaling.<br /> (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Details

Language :
English
ISSN :
1559-0259
Volume :
24
Issue :
10
Database :
MEDLINE
Journal :
Cardiovascular toxicology
Publication Type :
Academic Journal
Accession number :
39060883
Full Text :
https://doi.org/10.1007/s12012-024-09900-2