Back to Search
Start Over
In Silico Comparative Analysis of Ivermectin and Nirmatrelvir Inhibitors Interacting with the SARS-CoV-2 Main Protease.
- Source :
-
Biomolecules [Biomolecules] 2024 Jun 25; Vol. 14 (7). Date of Electronic Publication: 2024 Jun 25. - Publication Year :
- 2024
-
Abstract
- Exploring therapeutic options is crucial in the ongoing COVID-19 pandemic caused by SARS-CoV-2. Nirmatrelvir, which is a potent inhibitor that targets the SARS-CoV-2 M <superscript>pro</superscript> , shows promise as an antiviral treatment. Additionally, Ivermectin, which is a broad-spectrum antiparasitic drug, has demonstrated effectiveness against the virus in laboratory settings. However, its clinical implications are still debated. Using computational methods, such as molecular docking and 100 ns molecular dynamics simulations, we investigated how Nirmatrelvir and Ivermectin interacted with SARS-CoV-2 M <superscript>pro(A)</superscript> . Calculations using density functional theory were instrumental in elucidating the behavior of isolated molecules, primarily by analyzing the frontier molecular orbitals. Our analysis revealed distinct binding patterns: Nirmatrelvir formed strong interactions with amino acids, like MET49, MET165, HIS41, HIS163, HIS164, PHE140, CYS145, GLU166, and ASN142, showing stable binding, with a root-mean-square deviation (RMSD) of around 2.0 Å. On the other hand, Ivermectin interacted with THR237, THR239, LEU271, LEU272, and LEU287, displaying an RMSD of 1.87 Å, indicating enduring interactions. Both ligands stabilized M <superscript>pro(A)</superscript> , with Ivermectin showing stability and persistent interactions despite forming fewer hydrogen bonds. These findings offer detailed insights into how Nirmatrelvir and Ivermectin bind to the SARS-CoV-2 main protease, providing valuable information for potential therapeutic strategies against COVID-19.
- Subjects :
- Humans
Protein Binding
Sulfonamides chemistry
Sulfonamides pharmacology
Binding Sites
Protease Inhibitors chemistry
Protease Inhibitors pharmacology
Lactams
Leucine
Nitriles
Proline
Ivermectin chemistry
Ivermectin pharmacology
SARS-CoV-2 drug effects
SARS-CoV-2 enzymology
Molecular Docking Simulation
Coronavirus 3C Proteases chemistry
Coronavirus 3C Proteases antagonists & inhibitors
Coronavirus 3C Proteases metabolism
Molecular Dynamics Simulation
COVID-19 Drug Treatment
Antiviral Agents chemistry
Antiviral Agents pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 2218-273X
- Volume :
- 14
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- Biomolecules
- Publication Type :
- Academic Journal
- Accession number :
- 39062468
- Full Text :
- https://doi.org/10.3390/biom14070755