Back to Search Start Over

Nucleolytic processing of abasic sites underlies PARP inhibitor hypersensitivity in ALC1-deficient BRCA mutant cancer cells.

Authors :
Ramakrishnan N
Weaver TM
Aubuchon LN
Woldegerima A
Just T
Song K
Vindigni A
Freudenthal BD
Verma P
Source :
Nature communications [Nat Commun] 2024 Jul 27; Vol. 15 (1), pp. 6343. Date of Electronic Publication: 2024 Jul 27.
Publication Year :
2024

Abstract

Clinical success with poly (ADP-ribose) polymerase inhibitors (PARPi) is impeded by inevitable resistance and associated cytotoxicity. Depletion of Amplified in Liver Cancer 1 (ALC1), a chromatin-remodeling enzyme, can overcome these limitations by hypersensitizing BReast CAncer genes 1/2 (BRCA1/2) mutant cells to PARPi. Here, we demonstrate that PARPi hypersensitivity upon ALC1 loss is reliant on its role in promoting the repair of chromatin buried abasic sites. We show that ALC1 enhances the ability of the abasic site processing enzyme, Apurinic/Apyrimidinic endonuclease 1 (APE1) to cleave nucleosome-occluded abasic sites. However, unrepaired abasic sites in ALC1-deficient cells are readily accessed by APE1 at the nucleosome-free replication forks. APE1 cleavage leads to fork breakage and trapping of PARP1/2 upon PARPi treatment, resulting in hypersensitivity. Collectively, our studies reveal how cells overcome the chromatin barrier to repair abasic lesions and uncover cleavage of abasic sites as a mechanism to overcome limitations of PARPi.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
2041-1723
Volume :
15
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
39068174
Full Text :
https://doi.org/10.1038/s41467-024-50673-7