Back to Search Start Over

DdmDE eliminates plasmid invasion by DNA-guided DNA targeting.

Authors :
Yang XY
Shen Z
Wang C
Nakanishi K
Fu TM
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2024 Jul 20. Date of Electronic Publication: 2024 Jul 20.
Publication Year :
2024

Abstract

Horizontal gene transfer is a key driver of bacterial evolution, but it also presents severe risks to bacteria by introducing invasive mobile genetic elements. To counter these threats, bacteria have developed various defense systems, including prokaryotic Argonautes (pAgo) and the D NA D efense M odule DdmDE system. Through biochemical analysis, structural determination, and in vivo plasmid clearance assays, we elucidate the assembly and activation mechanisms of DdmDE, which eliminates small, multicopy plasmids. We demonstrate that DdmE, a pAgo-like protein, acts as a catalytically inactive, DNA-guided, DNA-targeting defense module. In the presence of guide DNA, DdmE targets plasmids and recruits a dimeric DdmD, which contains nuclease and helicase domains. Upon binding to DNA substrates, DdmD transitions from an autoinhibited dimer to an active monomer, which then translocates along and cleaves the plasmids. Together, our findings reveal the intricate mechanisms underlying DdmDE-mediated plasmid clearance, offering fundamental insights into bacterial defense systems against plasmid invasions.

Details

Language :
English
ISSN :
2692-8205
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Publication Type :
Academic Journal
Accession number :
39071313
Full Text :
https://doi.org/10.1101/2024.07.20.604412