Back to Search
Start Over
Chemiexcitation Acceleration of 1,2-Dioxetanes by Spiro-Fused Six-Member Rings with Electron-Withdrawing Motifs.
- Source :
-
Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2024 Nov 11; Vol. 63 (46), pp. e202410057. Date of Electronic Publication: 2024 Oct 02. - Publication Year :
- 2024
-
Abstract
- The chemiluminescent light-emission pathway of phenoxy-1,2-dioxetane luminophores attracts growing interest within the scientific community. Dioxetane probes undergoing rapid flash-type chemiexcitation exhibit higher detection sensitivity than those with a slow glow-type chemiexcitation rate. We discovered that dioxetanes fused to non-strained six-member rings, with hetero atoms or inductive electron-withdrawing groups, present both accelerated chemiexcitation rates and elevated chemical stability compared to dioxetanes fused to four-member strained rings. DFT computational simulations supported the chemiexcitation acceleration observed by spiro-fused six-member rings with inductive electron-withdrawing groups of dioxetanes. Specifically, a spiro-dioxetane with a six-member sulfone ring exhibited a chemiexcitation rate 293-fold faster than that of spiro-adamantyl-dioxetane. A turn-ON dioxetane probe for the detection of the enzyme β-galactosidase, containing the six-member sulfone unit, exhibited a S/N value of 108 in LB cell growth medium. This probe demonstrated a substantial increase in detection sensitivity towards E. coli bacterial cells expressing β-galactosidase, with an LOD value that is 44-fold more sensitive than that obtained by the adamantyl counterpart. The accelerated chemiexcitation and the elevated chemical stability presented by dioxetane containing a spiro-fused six-member ring with a sulfone inductive electron-withdrawing group, make it an ideal candidate for designing efficient turn-on chemiluminescent probes with exceptionally high detection sensitivity.<br /> (© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.)
Details
- Language :
- English
- ISSN :
- 1521-3773
- Volume :
- 63
- Issue :
- 46
- Database :
- MEDLINE
- Journal :
- Angewandte Chemie (International ed. in English)
- Publication Type :
- Academic Journal
- Accession number :
- 39077893
- Full Text :
- https://doi.org/10.1002/anie.202410057