Back to Search
Start Over
The single-cell transcriptomic landscape of the topological differences in mammalian auditory receptors.
- Source :
-
Science China. Life sciences [Sci China Life Sci] 2024 Nov; Vol. 67 (11), pp. 2398-2410. Date of Electronic Publication: 2024 Jul 29. - Publication Year :
- 2024
-
Abstract
- Mammalian hair cells (HCs) are arranged spirally along the cochlear axis and correspond to different frequency ranges. Serving as primary sound detectors, HCs spatially segregate component frequencies into a topographical map. HCs display significant diversity in anatomical and physiological characteristics, yet little is known about the organization of the cochleotopic map of HCs or the molecules involved in this process. Using single-cell RNA sequencing, we determined the distinct molecular profiles of inner hair cells and outer hair cells, and we identified numerous position-dependent genes that were expressed as gradients. Newly identified genes such as Ptn, Rxra, and Nfe2l2 were found to be associated with tonotopy. We employed the SCENIC algorithm to predict the transcription factors that potentially shape these tonotopic gradients. Furthermore, we confirmed that Nfe2l2, a tonotopy-related transcription factor, is critical in mice for sensing low-to-medium sound frequencies in vivo. the analysis of cell-cell communication revealed potential receptor-ligand networks linking inner hair cells to spiral ganglion neurons, including pathways such as BDNF-Ntrk and PTN-Scd4, which likely play essential roles in tonotopic maintenance. Overall, these findings suggest that molecular gradients serve as the organizing principle for maintaining the selection of sound frequencies by HCs.<br /> (© 2024. Science China Press.)
- Subjects :
- Animals
Mice
Hair Cells, Auditory, Inner metabolism
NF-E2-Related Factor 2 metabolism
NF-E2-Related Factor 2 genetics
Cochlea metabolism
Hair Cells, Auditory, Outer metabolism
Hair Cells, Auditory, Outer physiology
Spiral Ganglion metabolism
Spiral Ganglion cytology
Cell Communication
Transcription Factors metabolism
Transcription Factors genetics
Gene Expression Profiling
Hair Cells, Auditory metabolism
Hair Cells, Auditory physiology
Single-Cell Analysis
Transcriptome
Subjects
Details
- Language :
- English
- ISSN :
- 1869-1889
- Volume :
- 67
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Science China. Life sciences
- Publication Type :
- Academic Journal
- Accession number :
- 39083201
- Full Text :
- https://doi.org/10.1007/s11427-024-2672-1