Back to Search Start Over

Discovery of a novel Xanthone derivative P24 for anti-AD via targeting sTGFBR3.

Authors :
Zhou L
Qi Z
Wang X
Li Z
Feng W
Wang N
Li X
Ning X
Xing Y
Jiang X
Xu Z
Zhao Q
Source :
European journal of medicinal chemistry [Eur J Med Chem] 2024 Oct 05; Vol. 276, pp. 116729. Date of Electronic Publication: 2024 Jul 30.
Publication Year :
2024

Abstract

Soluble transforming growth factor beta receptor 3 (sTGFBR3) antagonist is a new focus in the research and development of Alzheimer's disease (AD) drugs. Our previous studies have identified sTGFBR3 as a promising new target for AD, with few targeted antagonists identified. In this study, we performed structural modeling of sTGFBR3 using AlphaFold2, followed by high-throughput virtual screening and surface plasmon resonance assays. which collectively identified Xanthone as potential compounds for targeting sTGFBR3. After optimizing the sTGFBR3-Xanthone complex using molecular dynamics (MD) simulations, we prepared a series of novel Xanthone derivatives and evaluated their anti-inflammatory activity, toxicity, and structure-activity relationship in BV2 cell model induced by lipopolysaccharides (LPS) or APP/PS1/tau mouse brain extract (BE). Several derivatives with the most potent anti-inflammatory activity were tested for blood-brain barrier permeability and sTGFBR3 affinity. Derivative P24, selected for its superior properties, was further evaluated in vitro. The results indicated that P24 increased the activation of TGF-β signaling and decreased the activation of IκBα/NF-κB signaling by targeting sTGFBR3, thereby regulating the inflammation-phagocytosis balance in microglia. Moreover, the low acute toxicity, long half-life, and low plasma clearance of P24 suggest that it can be sustained in vivo. This property may render P24 a more effective treatment modality for chronic diseases, particularly AD. The study demonstrates P24 serve as potential novel candidates for the treatment of AD via antagonizing sTGFBR3.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024. Published by Elsevier Masson SAS.)

Details

Language :
English
ISSN :
1768-3254
Volume :
276
Database :
MEDLINE
Journal :
European journal of medicinal chemistry
Publication Type :
Academic Journal
Accession number :
39088998
Full Text :
https://doi.org/10.1016/j.ejmech.2024.116729