Back to Search Start Over

Tailoring the specificity of ficin versus large hemoglobin and small casein by co-immobilizing inert proteins on the immobilized enzyme layer and further modification with aldehyde dextran.

Authors :
Siar EH
Abellanas-Perez P
Rocha-Martin J
Fernandez-Lafuente R
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Oct; Vol. 277 (Pt 3), pp. 134487. Date of Electronic Publication: 2024 Aug 03.
Publication Year :
2024

Abstract

Ficin has been immobilized at full loading on glyoxyl agarose beads. Then, ficin was blocked with 2,2'-dipyridyldisulfide. To be effective, the modification must be performed in the presence of 0.5 M urea, as the enzyme was not inhibited under standard conditions, very likely because the catalytic Cys was not fully exposed to the medium. Activity could be fully recovered by incubation with 1 M mercaptoethanol. This biocatalyst could hydrolyze hemoglobin and casein. The objective of this paper was to increase the enzyme specificity versus small proteins by generating steric hindrances to the access of large proteins. The step by step blocking via ionic exchange of the biocatalyst with aminated bovine serum albumin (BSA), aldehyde dextran and a second layer of aminated BSA produced a biocatalyst that maintained its activity versus small synthetic substrates, increased the biocatalyst stability, while reduced its activity to over 50 % versus casein. Interestingly, this treatment almost fully annulled the activity versus hemoglobin, more effectively at 37 °C than at 55 °C. The biocatalyst could be reused 5 times without changes in activity. The changes could be caused by steric hindrances, but it cannot be discarded some changes in enzyme sequence specificity caused by the modifications.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
277
Issue :
Pt 3
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
39102910
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.134487