Back to Search
Start Over
The phototoxicity of sulfamethoxazole stress on pakchoi cabbage (Brassica rapa var. chinensis) seedlings: From the perspective of photoreaction and omics analysis.
- Source :
-
The Science of the total environment [Sci Total Environ] 2024 Nov 10; Vol. 950, pp. 175391. Date of Electronic Publication: 2024 Aug 07. - Publication Year :
- 2024
-
Abstract
- The increasing use of antibiotics has attracted widespread attention to their environmental risks. However, the phototoxicity of sulfonamide antibiotics to plants remain unclear. In this study, the mechanism of the effect of sulfamethoxazole on photosynthesis of pakchoi cabbage (Brassica rapa var. chinensis) was investigated. The results showed that sulfamethoxazole inhibited the growth of pakchoi cabbage and produced photosynthetic toxicity. The growth inhibition rates increased with concentration, the root and shoot weight were 76.02 % and 47.04 % of the control, respectively, with stay-greens phenomenon in 4 mg·L <superscript>-1</superscript> sulfamethoxazole treatment. Chlorophyll precursors (protoporphyrin IX (Proto IX), Mg-proto IX, and protochlorophyllide (Pchlide), 5-aminolevulinic acid (ALA), and porphobilinogen (PBG)) were 1.38-, 1.26-, 1.12-, 1.71-, and 0.96-fold of the control, respectively; photosynthetic pigments (chlorophyll a, chlorophyll b, and carotenoids) were 1.26-, 1.39-, and 1.03-fold of the control, respectively. Respiration rate was 271.42 % of the control, whereas the net photosynthetic rate was 50.50 % of the control. The maximum photochemical quantum yield of PSII (F <subscript>v</subscript> /F <subscript>m</subscript> ), the actual photosynthetic efficiency (Y(II)), the quantum yield of non-regulated energy dissipation (Y(NO)), the apparent electron transfer efficiency of PSII (ETR) under actual light intensity were affected, and chloroplast swelling was observed. Proteomic analysis showed that photosynthesis-related pathways were significantly up-regulated, biological processes such as light response, carbohydrates, and reactive oxygen species were activated. Metabolomic analysis revealed that the tricarboxylic acid cycle (TCA cycle) and carbohydrate catabolism were stimulated significantly (p < 0.05), sugars and amino acids were increased to regulate and enhance the resilience of photosynthesis. While folate biosynthesis and ribosomal pathways were significantly down-regulated, the synthesis and translation processes of amino acids and nucleotides were inhibited.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-1026
- Volume :
- 950
- Database :
- MEDLINE
- Journal :
- The Science of the total environment
- Publication Type :
- Academic Journal
- Accession number :
- 39122040
- Full Text :
- https://doi.org/10.1016/j.scitotenv.2024.175391