Back to Search
Start Over
DLCNBC-SA: a model for assessing axillary lymph node metastasis status in early breast cancer patients.
- Source :
-
Quantitative imaging in medicine and surgery [Quant Imaging Med Surg] 2024 Aug 01; Vol. 14 (8), pp. 5831-5844. Date of Electronic Publication: 2024 Jul 26. - Publication Year :
- 2024
-
Abstract
- Background: Axillary lymph node (ALN) status is a crucial prognostic indicator for breast cancer metastasis, with manual interpretation of whole slide images (WSIs) being the current standard practice. However, this method is subjective and time-consuming. Recent advancements in deep learning-based methods for medical image analysis have shown promise in improving clinical diagnosis. This study aims to leverage these technological advancements to develop a deep learning model based on features extracted from primary tumor biopsies for preoperatively identifying ALN metastasis in early-stage breast cancer patients with negative nodes.<br />Methods: We present DLCNBC-SA, a deep learning-based network specifically tailored for core needle biopsy and clinical data feature extraction, which integrates a self-attention mechanism (CNBC-SA). The proposed model consists of a feature extractor based on convolutional neural network (CNN) and an improved self-attention mechanism module, which can preserve the independence of features in WSIs for analysis and enhancement to provide rich feature representation. To validate the performance of the proposed model, we conducted comparative experiments and ablation studies using publicly available datasets, and verification was performed through quantitative analysis.<br />Results: The comparative experiment illustrates the superior performance of the proposed model in the task of binary classification of ALNs, as compared to alternative methods. Our method achieved outstanding performance [area under the curve (AUC): 0.882] in this task, significantly surpassing the state-of-the-art (SOTA) method on the same dataset (AUC: 0.862). The ablation experiment reveals that incorporating RandomRotation data augmentation technology and utilizing Adadelta optimizer can effectively enhance the performance of the proposed model.<br />Conclusions: The experimental results demonstrate that the model proposed in this paper outperforms the SOTA model on the same dataset, thereby establishing its reliability as an assistant for pathologists in analyzing WSIs of breast cancer. Consequently, it significantly enhances both the efficiency and accuracy of doctors during the diagnostic process.<br />Competing Interests: Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://qims.amegroups.com/article/view/10.21037/qims-24-257/coif). The authors have no conflicts of interest to declare.<br /> (2024 Quantitative Imaging in Medicine and Surgery. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 2223-4292
- Volume :
- 14
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Quantitative imaging in medicine and surgery
- Publication Type :
- Academic Journal
- Accession number :
- 39144041
- Full Text :
- https://doi.org/10.21037/qims-24-257