Back to Search
Start Over
Taxonomic and abundance biases affect the record of marine eukaryotic plankton communities in sediment DNA archives.
- Source :
-
Molecular ecology resources [Mol Ecol Resour] 2024 Nov; Vol. 24 (8), pp. e14014. Date of Electronic Publication: 2024 Aug 26. - Publication Year :
- 2024
-
Abstract
- Environmental DNA (eDNA) preserved in marine sediments is increasingly being used to study past ecosystems. However, little is known about how accurately marine biodiversity is recorded in sediment eDNA archives, especially planktonic taxa. Here, we address this question by comparing eukaryotic diversity in 273 eDNA samples from three water depths and the surface sediments of 24 stations in the Nordic Seas. Analysis of 18S-V9 metabarcoding data reveals distinct eukaryotic assemblages between water and sediment eDNA. Only 40% of Amplicon Sequence Variants (ASVs) detected in water were also found in sediment eDNA. Remarkably, the ASVs shared between water and sediment accounted for 80% of total sequence reads suggesting that a large amount of plankton DNA is transported to the seafloor, predominantly from abundant phytoplankton taxa. However, not all plankton taxa were equally archived on the seafloor. The plankton DNA deposited in the sediments was dominated by diatoms and showed an underrepresentation of certain nano- and picoplankton taxa (Picozoa or Prymnesiophyceae). Our study offers the first insights into the patterns of plankton diversity recorded in sediment in relation to seasonality and spatial variability of environmental conditions in the Nordic Seas. Our results suggest that the genetic composition and structure of the plankton community vary considerably throughout the water column and differ from what accumulates in the sediment. Hence, the interpretation of sedimentary eDNA archives should take into account potential taxonomic and abundance biases when reconstructing past changes in marine biodiversity.<br /> (© 2024 John Wiley & Sons Ltd.)
- Subjects :
- DNA Barcoding, Taxonomic methods
RNA, Ribosomal, 18S genetics
Eukaryota genetics
Eukaryota classification
DNA, Environmental genetics
Biota
Aquatic Organisms genetics
Aquatic Organisms classification
Seawater
Sequence Analysis, DNA methods
Geologic Sediments chemistry
Plankton genetics
Plankton classification
Biodiversity
Subjects
Details
- Language :
- English
- ISSN :
- 1755-0998
- Volume :
- 24
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Molecular ecology resources
- Publication Type :
- Academic Journal
- Accession number :
- 39188124
- Full Text :
- https://doi.org/10.1111/1755-0998.14014