Back to Search Start Over

Study on the Rapid Limit Test for Six Sulfonamide Residues in Food Based on the TLC-SERS Method.

Authors :
Ma Y
Zhang M
Li L
Liu J
Xu F
Wang Y
Song B
Xu T
Hong Y
Zhang H
Source :
Molecules (Basel, Switzerland) [Molecules] 2024 Aug 22; Vol. 29 (16). Date of Electronic Publication: 2024 Aug 22.
Publication Year :
2024

Abstract

Sulfonamides are not only widely applied in clinics but also highly valued in animal husbandry. Recently, it has become common for sulfonamide residues to exceed the standard limits in food, which can affect human health. Current regulations limit these residues. Therefore, we constructed a new limit test method to rapidly determine the levels of sulfonamide residues. Six sulfonamides were detected using the latest method called TLC-SERS, namely, sulfamethasone (A), sulfamethazine (B), sulfadoxine (C), sulfamethoxydiazine (D), sulfamethoxazole (E), and sulfathiazole (F). The optimal conditions for SERS detection were investigated for these six drugs, and the separation effects of different TLC spreaders on them were compared. Then, we successfully established a separation system using dichloromethane-methanol-ammonia in a ratio of 5:1:0.25 ( v / v / v ), which provided good separation effects on the six drugs. The residues were preliminarily separated via TLC. A silver sol solution was added to the spot on the silica gel G plate at the corresponding specific shift values, and SERS detection was performed. The sample solution was placed on the spot under a 532 nm laser, and the SERS spectrum was collected and analyzed for the six sulfonamides. The results showed obvious variations in the SERS spectrum among the six sulfonamides, with the LODs being 12.5, 6.4, 6.3, 7.1, 18.8, and 6.2 ng/mL from A to F, respectively, and an RSD of <3.0%. Within 48 h, the SERS signal for each sulfonamide drug was kept stable, with an RSD of <3.0%. The detection results of 20 samples using the TLC-SERS method were consistent with those obtained by UPLC-MS/MS. The established TLC-SERS method is simple and fast, providing a useful reference for the rapid detection of residue limits in food.

Details

Language :
English
ISSN :
1420-3049
Volume :
29
Issue :
16
Database :
MEDLINE
Journal :
Molecules (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
39203054
Full Text :
https://doi.org/10.3390/molecules29163977