Back to Search Start Over

Network pharmacology and experimental validation to reveal the pharmacological mechanisms of Astragaloside Ⅳ in treating intervertebral disc degeneration.

Authors :
Chen D
Fan T
Sun K
Rao W
Sheng X
Wan Z
Shu B
Chen L
Source :
European journal of pharmacology [Eur J Pharmacol] 2024 Nov 05; Vol. 982, pp. 176951. Date of Electronic Publication: 2024 Aug 28.
Publication Year :
2024

Abstract

This study aims to identify potential targets and regulatory mechanisms of Astragaloside Ⅳ (AS-Ⅳ) in treating intervertebral disc degeneration (IDD) through network pharmacology analysis with experimental validation. Lumbar spine instability (LSI) mouse models were first established and treated with AS-Ⅳ. Micro-CT, safranin O-fast green staining, IDD score, RT-PCR and immunohistochemistry staining were employed to demonstrate the effect of AS-Ⅳ. Network pharmacology was used to predict the signaling pathways and potential targets of AS-Ⅳ in treating IDD. RT-PCR and immunohistochemistry staining were used to elucidate and validate the mechanism of AS-Ⅳ in vivo. Animal experiments showed that AS-Ⅳ maintained disc height and volume, improved matrix metabolism in LSI mice, and restored Col2α1, ADAMTS-5, Aggrecan, and MMP-13 expression in degenerated discs. Network pharmacology analysis identified 32 cross-targets between AS-Ⅳ and IDD, and PPI network analysis filtered out 11 core genes, including ALB, MAPK1, MAPK14 (p38 MAPK), EGFR, TGFBR1, MAPK8, MMP3, ANXA5, ESR1, CASP3, and IGF1. Enrichment analysis revealed that 7 of the 11 core target genes enriched in the MAPK signaling pathway, and AS-Ⅳ exhibited stable binding to them according to molecular docking results. Experimental validation indicated that AS-Ⅳ reversed mRNA levels of 7 core targets in degenerated disc tissues in LSI mice. Immunohistochemistry staining further revealed that AS-Ⅳ treatment mainly depressed IDD-elevated protein levels of EGFR, p38 MAPK and CASP3 in the annulus fibrosus. This study elucidates that AS-Ⅳ alleviates lumbar spine instability-induced IDD in mice, suggesting the mechanism may involve inhibition of the EGFR/MAPK signaling pathway.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0712
Volume :
982
Database :
MEDLINE
Journal :
European journal of pharmacology
Publication Type :
Academic Journal
Accession number :
39214272
Full Text :
https://doi.org/10.1016/j.ejphar.2024.176951