Back to Search
Start Over
Autophagy and PPARs/NF-κB-associated inflammation are involved in hepatotoxicity induced by the synthetic phenolic antioxidant 2,4-di-tert-butylphenol in common carp (Cyprinus carpio).
- Source :
-
Ecotoxicology and environmental safety [Ecotoxicol Environ Saf] 2024 Oct 01; Vol. 284, pp. 116937. Date of Electronic Publication: 2024 Sep 02. - Publication Year :
- 2024
-
Abstract
- The synthetic phenolic antioxidant 2,4-di-tert-butylphenol (2,4-DTBP) is an emergent contaminant and can disrupt the delicate balance of aquatic ecosystems. This study aimed to investigate 2,4-DTBP-induced hepatotoxicity in common carp and the underlying mechanisms involved. Sixty common carp were divided into four groups and exposed to 0 mg/L, 0.01 mg/L, 0.1 mg/L or 1 mg/L 2,4-DTBP for 30 days. Here, we first demonstrated that 2,4-DTBP exposure caused liver damage, manifested as hepatocyte nuclear pyknosis, inflammatory cell infiltration and apoptosis. Moreover, 2,4-DTBP exposure induced hepatic reactive oxygen species (ROS) overload and disrupted antioxidant capacity, as indicated by the reduced activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). In addition, transmission electron microscopy revealed that 2,4-DTBP exposure induced autophagosome accumulation in the liver of common carp. Western blot analysis further revealed that 2,4-DTBP exposure significantly decreased the protein levels of mTOR and increased the LC3II/LC3I ratio. Furthermore, 2,4-DTBP exposure inhibited lysozyme (LZM) and alkaline phosphatase (AKP) activity; decreased immunoglobulin M (IgM), complement 3 (C3), and complement 4 (C4) levels in the serum; increased the mRNA levels of proinflammatory cytokines (NF-κB, TNF-α, IL-1β and IL-6); and increased the mRNA levels of three types of proliferator-activated receptors (PPARs) (α, β/δ and γ). Molecular docking revealed that 2,4-DTBP directly binds to the internal active pocket of PPARs. Overall, we concluded that 2,4-DTBP exposure in aquatic systems could induce hepatotoxicity in common carp by regulating autophagy and controlling inflammatory responses. The present study provides new insights into the hepatotoxicity mechanism induced by 2,4-DTBP in aquatic organisms and furthers our understanding of the effects of 2,4-DTBP on public health and ecotoxicology.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Subjects :
- Animals
Peroxisome Proliferator-Activated Receptors metabolism
Inflammation chemically induced
Inflammation pathology
Chemical and Drug Induced Liver Injury pathology
Reactive Oxygen Species metabolism
Carps
Autophagy drug effects
NF-kappa B metabolism
Water Pollutants, Chemical toxicity
Phenols toxicity
Antioxidants metabolism
Liver drug effects
Liver pathology
Subjects
Details
- Language :
- English
- ISSN :
- 1090-2414
- Volume :
- 284
- Database :
- MEDLINE
- Journal :
- Ecotoxicology and environmental safety
- Publication Type :
- Academic Journal
- Accession number :
- 39226863
- Full Text :
- https://doi.org/10.1016/j.ecoenv.2024.116937