Back to Search Start Over

Envelope domain III E 324 , E 351 , and E 380 mutations lever adaptive evolution of DENV-1 genotype I.

Authors :
Jiang T
Huang C
Ruan Q
Huang X
Liang C
Chen Z
Yu X
Peng Y
Liu Z
Cheng G
Dai J
Sun J
Source :
Journal of virology [J Virol] 2024 Oct 22; Vol. 98 (10), pp. e0118324. Date of Electronic Publication: 2024 Sep 04.
Publication Year :
2024

Abstract

Dengue virus (DENV) gains genetic mutations during continuous transmission and evolution, making the virus more adaptive and virulent. The clade of DENV-1 genotype I has expanded and become the predominant genotype in Asia and the Pacific areas, but the underlying mechanisms are unclear. A combined analysis of nonsynonymous mutations in domain III of the envelope protein and their biological effects on virus pathogenesis and transmission was evaluated. Phylogenetic analyses found three nonsynonymous mutations (V324I, V351L, and V380I) in domain III of the envelope protein, which emerged in 1970s-1990s and stably inherited and expanded in contemporary strains after 2000. We generated reverse-mutated viruses (I324V, L351V, and I380V) based on an infectious clone of an epidemic DENV-1 strain (NIID02-20), and the results suggested that the infectivity of the contemporary epidemic virus (wild type, WT) has increased compared to the reverse mutant viruses in mammalian hosts but not mosquito vectors. The WT virus showed a higher binding affinity to host cells and increased virion stability. In addition, weaker immunogenicity and higher resistance to neutralizing antibodies of the WT virus indicated a trend of immune escape. The data suggested that nonsynonymous mutations of the E protein (V324I, V351L, and V380I) promote infectivity and immune evasion of DENV-1 genotype I, which may facilitate its onward transmission on a global scale.<br />Importance: We provide evidence that minor sequence variation among dengue virus (DENV) strains can result in increased adaptability and virulence, impacting both the biology of the virus and the antiviral immune response. The genetic mutations of DENV-1 gained during continuous transmission and evolution will offer new clues for the design of novel vaccines against flaviviruses.<br />Competing Interests: The authors declare no conflict of interest.

Details

Language :
English
ISSN :
1098-5514
Volume :
98
Issue :
10
Database :
MEDLINE
Journal :
Journal of virology
Publication Type :
Academic Journal
Accession number :
39230303
Full Text :
https://doi.org/10.1128/jvi.01183-24