Back to Search Start Over

Regulation of intercellular viscosity by E-cadherin-dependent phosphorylation of EGFR in collective cell migration.

Authors :
Fu C
Dilasser F
Lin SZ
Karnat M
Arora A
Rajendiran H
Ong HT
Mui Hoon Brenda N
Phow SW
Hirashima T
Sheetz M
Rupprecht JF
Tlili S
Viasnoff V
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2024 Sep 10; Vol. 121 (37), pp. e2405560121. Date of Electronic Publication: 2024 Sep 04.
Publication Year :
2024

Abstract

Collective cell migration is crucial in various physiological processes, including wound healing, morphogenesis, and cancer metastasis. Adherens Junctions (AJs) play a pivotal role in regulating cell cohesion and migration dynamics during tissue remodeling. While the role and origin of the junctional mechanical tension at AJs have been extensively studied, the influence of the actin cortex structure and dynamics on junction plasticity remains incompletely understood. Moreover, the mechanisms underlying stress dissipation at junctions are not well elucidated. Here, we found that the ligand-independent phosphorylation of epithelial growth factor receptor (EGFR) downstream of de novo E-cadherin adhesion orchestrates a feedback loop, governing intercellular viscosity via the Rac pathway regulating actin dynamics. Our findings highlight how the E-cadherin-dependent EGFR activity controls the migration mode of collective cell movements independently of intercellular tension. This modulation of effective viscosity coordinates cellular movements within the expanding monolayer, inducing a transition from swirling to laminar flow patterns while maintaining a constant migration front speed. Additionally, we propose a vertex model with adjustable junctional viscosity, capable of replicating all observed cellular flow phenotypes experimentally.<br />Competing Interests: Competing interests statement:The authors declare no competing interest.

Details

Language :
English
ISSN :
1091-6490
Volume :
121
Issue :
37
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
39231206
Full Text :
https://doi.org/10.1073/pnas.2405560121