Back to Search Start Over

Humic substances sorption from wastewater on the biochar produced from the waste materials.

Authors :
Dudło A
Michalska J
Turek-Szytow J
Kobyłecki R
Zarzycki R
Wichliński M
Surmacz-Górska J
Source :
Journal of environmental management [J Environ Manage] 2024 Sep 06; Vol. 370, pp. 122366. Date of Electronic Publication: 2024 Sep 06.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

In recent years, increasing attention has been paid to the possibility of converting waste materials, e.g. manure, bio-waste, green waste, waste from the water and sewage industries (e.g. post-fermentation sludge), and agri-food waste into biochars (BCs) by pyrolysis. The ability of biochar to improve soil health and fertility is driving growing interest in its use as a soil amendment. A high soil stability of BCs and their excellent nutrient sorption properties are the main reasons for the superiority of such materials over other organic soil amendments. In addition, BCs can retain soil-relevant compounds, including humic substances (HSs). Since most of the resources used to produce humic fertilisers are non-renewable, the effluent from anaerobic digestion of sewage sludge (reject water, RW), which contains high levels of HSs, is considered a promising target for their recovery. In this study, the potential of ten BCs derived from pine, oak, straw, sunflower, and digestate at different pyrolysis temperatures for the recovery of HSs from RW was evaluated. The sorption of HSs on the applied BCs was conducted using contact method for 24 h and then determined spectrophotometrically. The most effective sorbents for HSs from RW were BCs obtained from straw in the low and high temperatures with the sorption capacity of 3.10 mg g <superscript>-1</superscript> and 5.31 mg g <superscript>-1</superscript> , respectively. It was observed that the BCs produced from the same biomass at different pyrolysis temperatures had different sorption capacities for FA, HA, and a mixture of these compounds. The results indicated that BCs obtained from sunflower at different temperatures and oak at high temperature were the most promising sorbents for the recovery of HSs from RW. Such materials have the potential to be applied to soil and were selected for further evaluation due to their ability to enhance soil quality and immobilize pollutants. Further studies will assess their effectiveness in different soil conditions, their stability and persistence, and their impact on plant health and growth.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.)

Details

Language :
English
ISSN :
1095-8630
Volume :
370
Database :
MEDLINE
Journal :
Journal of environmental management
Publication Type :
Academic Journal
Accession number :
39243649
Full Text :
https://doi.org/10.1016/j.jenvman.2024.122366