Back to Search Start Over

Enzymatic preparation of diacylglycerols: lipase screening, immobilization, characterization and glycerolysis performance.

Authors :
Xie R
Peng X
Lee YY
Xie P
Tan CP
Wang Y
Zhang Z
Source :
Journal of the science of food and agriculture [J Sci Food Agric] 2024 Sep 11. Date of Electronic Publication: 2024 Sep 11.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

Backgrounds: Glycerolysis, with its advantages of readily available raw materials, simple operation, and mild reaction conditions, is a primary method for producing diacylglycerol (DAG). However, enzymatic glycerolysis faces challenges such as high enzyme costs, low reuse efficiency, and poor stability. The study aims to develop a cost-effective immobilized enzyme by covalently binding lipase to pre-activated carriers through the selection of suitable lipases, carriers, and activating agents. The optimization is intended to improve the glycerolysis reaction for efficient DAG production.<br />Results: Lipase CN-TL (from Thermomyces lanuginosus) was selected through glycerolysis reaction and molecular docking to catalyze the glycerolysis reaction. Optimizing the immobilization method by covalently binding CN-TL to poly(ethylene glycol) diglycidyl ether (PEGDGE)-preactivated resin LX-201A resulted in the preparation of the immobilized enzyme TL-PEGDGE-LX. The immobilized enzyme retained over 90% of its initial activity after five consecutive reactions, demonstrating excellent reusability. The DAG content in the product remained at 84.8% of its initial level, further highlighting the enzyme's potential for reusability and its promising applications in the food and oil industries.<br />Conclusions: The immobilized lipase TL-PEGDGE-LX, created by covalently immobilizing lipase CN-TL on PEGDGE-preactivated carriers, demonstrated broad applicability and excellent reusability. This approach offers an economical and convenient immobilization strategy for the enzymatic glycerolysis production of DAG. © 2024 Society of Chemical Industry.<br /> (© 2024 Society of Chemical Industry.)

Details

Language :
English
ISSN :
1097-0010
Database :
MEDLINE
Journal :
Journal of the science of food and agriculture
Publication Type :
Academic Journal
Accession number :
39258418
Full Text :
https://doi.org/10.1002/jsfa.13872