Back to Search Start Over

Effect of degree of substitution of octenyl succinate on starch micelles for synthesis and stability of selenium nanoparticles: Towards selenium supplements.

Authors :
Xie F
Liu X
Liu N
Feng X
He Z
Din ZU
Cheng S
Luo Y
Cai J
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Sep 12, pp. 135586. Date of Electronic Publication: 2024 Sep 12.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

To develop a promising selenium supplement that overcomes the instability and poor water dispersibility of selenium nanoparticles (SeNPs), we synthesized a series of amphiphilic octenyl succinic anhydride starch (OSAS) through esterification. As the degree of substitution (DS) increased, the particle size of OSAS micelles and the critical micelle concentration (CMC) decreased. FTIR and XRD analyses confirmed the successful introduction of octenyl succinic anhydride groups onto starch. Subsequently, OSAS micelles were used as carriers to synthesize SeNPs via in situ chemical reduction, forming SeNPs-loaded self-assembled starch nano-micelles (OSAS-SeNPs). The OSAS-SeNPs exhibited spherical dispersion in water with an average diameter of 116.1 ± 2.3 nm, contributed to enhanced hydrophobic interactions. TEM images showed a core-shell structure with SeNPs as the core and OSAS as the shell. FTIR results indicated hydrogen bonding interactions between OSAS and SeNPs. Due to the negatively charged OSAS shell and hydrogen bonding (OH⋯Se), OSAS-SeNPs remained non-aggregated for one month at room temperature, demonstrating remarkable stability. This study suggests that using OSAS can address the synthesis and stability issues of SeNPs, making it a potential selenium supplement candidate for further evaluation as an anticancer agent.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024. Published by Elsevier B.V.)

Details

Language :
English
ISSN :
1879-0003
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
39276897
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.135586