Back to Search
Start Over
The impact of photobiomodulation on angiogenic differentiation of two different dental derived stem cells using two irradiation protocols: an in vitro investigation.
- Source :
-
BMC oral health [BMC Oral Health] 2024 Sep 14; Vol. 24 (1), pp. 1090. Date of Electronic Publication: 2024 Sep 14. - Publication Year :
- 2024
-
Abstract
- The present study aimed to compare the effect of photobiomodulation with different energy densities on the angiogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and stem cells from human exfoliated deciduous teeth (SHED). Photobiomodulation therapy with a 660 nm diode laser (2.4 J/cm <superscript>2</superscript> and 3.9 J/cm <superscript>2</superscript> ) on two consecutive days post-culture was applied to two types of stem cells (hPDLSCs and SHED). The Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) test was undertaken to investigate Vascular Endothelial Growth Factor-A (VEGF-A) and Angiopoietin I (ANG-I) genes on days 1, 3, 5, 7, and 10 after the first session of laser application. The 4',6-diamidino-2-phenylindole (DAPI) staining and Methyl Thiazolyl Tetrazolium (MTT) test were conducted on days 1, 3, and 5 after the first session of laser application, to assess the cell viability. The Two-way ANOVA with Tukey post hoc test was used to analyze the outcomes of the MTT and RT-qPCR tests. The results of the MTT and DAPI convergently illustrated that the groups receiving photobiomodulation with 2.4 J/cm <superscript>2</superscript> had higher cell viability compared to 3.9 J/cm <superscript>2</superscript> . All experimental groups showed an upregulation of VEGF-A and ANG-I gene expression from day 1 to 5, followed by a downregulation from day 5 to 10. The groups with cultured hPDLSCs and SHED receiving photobiomodulation using 2.4 J/cm <superscript>2</superscript> had the most amounts of VEGF-A and ANG-I gene expression on day 5, respectively. In conclusion, the 660 nm mediated photobiomodulation therapy of cultured SHED and hPDLSCs with 2.4 J/cm <superscript>2</superscript> energy density may be associated with higher angiogenic differentiation (the expression of VEGF-A and ANG-I) as well as higher cell viability compared to the photobiomodulation therapy with 3.9 J/cm <superscript>2</superscript> .<br /> (© 2024. The Author(s).)
- Subjects :
- Humans
Neovascularization, Physiologic radiation effects
Real-Time Polymerase Chain Reaction
Angiopoietin-1
Cell Survival radiation effects
Lasers, Semiconductor therapeutic use
In Vitro Techniques
Cells, Cultured
Cell Differentiation radiation effects
Low-Level Light Therapy methods
Periodontal Ligament cytology
Periodontal Ligament radiation effects
Vascular Endothelial Growth Factor A metabolism
Stem Cells radiation effects
Tooth, Deciduous cytology
Subjects
Details
- Language :
- English
- ISSN :
- 1472-6831
- Volume :
- 24
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- BMC oral health
- Publication Type :
- Academic Journal
- Accession number :
- 39277707
- Full Text :
- https://doi.org/10.1186/s12903-024-04753-1