Back to Search
Start Over
Distinct cognitive and functional connectivity features from healthy cohorts can identify clinical obsessive-compulsive disorder.
- Source :
-
MedRxiv : the preprint server for health sciences [medRxiv] 2024 Sep 06. Date of Electronic Publication: 2024 Sep 06. - Publication Year :
- 2024
-
Abstract
- Improving diagnostic accuracy of obsessive-compulsive disorder (OCD) using models of brain imaging data is a key goal of the field, but this objective is challenging due to the limited size and phenotypic depth of clinical datasets. Leveraging the phenotypic diversity in large non-clinical datasets such as the UK Biobank (UKBB), offers a potential solution to this problem. Nevertheless, it remains unclear whether classification models trained on non-clinical populations will generalise to individuals with clinical OCD. This question is also relevant for the conceptualisation of OCD; specifically, whether the symptomology of OCD exists on a continuum from normal to pathological. Here, we examined a recently published "meta-matching" model trained on functional connectivity data from five large normative datasets (N=45,507) to predict cognitive, health and demographic variables. Specifically, we tested whether this model could classify OCD status in three independent clinical datasets (N=345). We found that the model could identify out-of-sample OCD individuals. Notably, the most predictive functional connectivity features mapped onto known cortico-striatal abnormalities in OCD and correlated with genetic brain expression maps previously implicated in the disorder. Further, the meta-matching model relied upon estimates of cognitive functions, such as cognitive flexibility and inhibition, to successfully predict OCD. These findings suggest that variability in non-clinical brain and behavioural features can discriminate clinical OCD status. These results support a dimensional and transdiagnostic conceptualisation of the brain and behavioural basis of OCD, with implications for research approaches and treatment targets.<br />Competing Interests: Conflict of Interest: L.C., L.J.H, and A.Z. are involved in a not-for-profit clinical neuromodulation centre (Qld. Neurostimulation Centre) that offers neuroimaging-guided neurotherapeutics. In the last 3 years PBF has received equipment for research from Neurosoft and Nexstim. He has served on a scientific advisory board for Magstim and received speaker fees from Otsuka. He has also acted as a founder and board member for TMS Clinics Australia and Resonance Therapeutics.
Details
- Language :
- English
- Database :
- MEDLINE
- Journal :
- MedRxiv : the preprint server for health sciences
- Publication Type :
- Academic Journal
- Accession number :
- 39281735
- Full Text :
- https://doi.org/10.1101/2024.09.02.24312960