Back to Search Start Over

Low frequency sinusoidal electromagnetic fields promote the osteogenic differentiation of rat bone marrow mesenchymal stem cells by modulating miR-34b-5p/STAC2.

Authors :
Fang X
Liu C
Wei K
Shu Z
Zou Y
Zhang Z
Ding Q
Jing S
Li W
Wang T
Li H
Wu H
Liu C
Ma T
Source :
Communications biology [Commun Biol] 2024 Sep 16; Vol. 7 (1), pp. 1156. Date of Electronic Publication: 2024 Sep 16.
Publication Year :
2024

Abstract

Electromagnetic fields (EMFs) have emerged as an effective treatment for osteoporosis. However, the specific mechanism underlying their therapeutic efficacy remains controversial. Herein, we confirm the pro-osteogenic effects of 15 Hz and 0.4-1 mT low-frequency sinusoidal EMFs (SEMFs) on rat bone marrow mesenchymal stem cells (BMSCs). Subsequent miRNA sequencing reveal that miR-34b-5p is downregulated in both the 0.4 mT and 1 mT SEMFs-stimulated groups. To clarify the role of miR-34b-5p in osteogenesis, BMSCs are transfected separately with miR-34b-5p mimic and inhibitor. The results indicate that miR-34b-5p mimic transfection suppress osteogenic differentiation, whereas inhibition of miR-34b-5p promote osteogenic differentiation of BMSCs. In vivo assessments using microcomputed tomography, H&E staining, and Masson staining show that miR-34b-5p inhibitor injections alleviate bone mass loss and trabecular microstructure deterioration in ovariectomy (OVX) rats. Further validation demonstrates that miR-34b-5p exerts its effects by regulating STAC2 expression. Modulating the miR-34b-5p/STAC2 axis attenuate the pro-osteogenic effects of low-frequency SEMFs on BMSCs. These studies indicate that the pro-osteogenic effect of SEMFs is partly due to the regulation of the miR-34b-5p/STAC2 pathway, which provides a potential therapeutic candidate for osteoporosis.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
2399-3642
Volume :
7
Issue :
1
Database :
MEDLINE
Journal :
Communications biology
Publication Type :
Academic Journal
Accession number :
39284881
Full Text :
https://doi.org/10.1038/s42003-024-06866-3