Back to Search
Start Over
The Effect of Congruent versus Incongruent Distractor Positioning on Electrophysiological Signals during Perceptual Decision-Making.
- Source :
-
The Journal of neuroscience : the official journal of the Society for Neuroscience [J Neurosci] 2024 Nov 06; Vol. 44 (45). Date of Electronic Publication: 2024 Nov 06. - Publication Year :
- 2024
-
Abstract
- Key event-related potentials (ERPs) of perceptual decision-making such as centroparietal positivity (CPP) elucidate how evidence is accumulated toward a given choice. Furthermore, this accumulation can be impacted by visual target selection signals such as the N2 contralateral (N2c). How these underlying neural mechanisms of perceptual decision-making are influenced by the spatial congruence of distractors relative to target stimuli remains unclear. Here, we used electroencephalography (EEG) in humans of both sexes to investigate the effect of distractor spatial congruency (same vs different hemifield relative to targets) on perceptual decision-making. We confirmed that responses for perceptual decisions were slower for spatially incongruent versus congruent distractors of high salience. Similarly, markers of target selection (N2c peak amplitude) and evidence accumulation (CPP slope) were found to be lower when distractors were spatially incongruent versus congruent. To evaluate the effects of congruency further, we applied drift diffusion modeling to participant responses, which showed that larger amplitudes of both ERPs were correlated with shorter nondecision times when considering the effect of congruency. The modeling also suggested that congruency's effect on behavior occurred prior to and during evidence accumulation when considering the effects of the N2c peak and CPP slope. These findings point to spatially incongruent distractors, relative to congruent distractors, influencing decisions as early as the initial sensory processing phase and then continuing to exert an effect as evidence is accumulated throughout the decision-making process. Overall, our findings highlight how key electrophysiological signals of perceptual decision-making are influenced by the spatial congruence of target and distractor.<br />Competing Interests: The authors declare no competing financial interests.<br /> (Copyright © 2024 the authors.)
Details
- Language :
- English
- ISSN :
- 1529-2401
- Volume :
- 44
- Issue :
- 45
- Database :
- MEDLINE
- Journal :
- The Journal of neuroscience : the official journal of the Society for Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 39299801
- Full Text :
- https://doi.org/10.1523/JNEUROSCI.2079-23.2024