Back to Search
Start Over
Calcium has a direct effect on thick filament activation in porcine myocardium.
- Source :
-
The Journal of general physiology [J Gen Physiol] 2024 Nov 04; Vol. 156 (11). Date of Electronic Publication: 2024 Sep 20. - Publication Year :
- 2024
-
Abstract
- Sarcomere activation in striated muscle requires both thin filament-based and thick filament-based activation mechanisms. Recent studies have shown that myosin heads on the thick filaments undergo OFF to ON structural transitions in response to calcium (Ca2+) in permeabilized porcine myocardium in the presence of a small molecule inhibitor that eliminated active force. The changes in X-ray diffraction signatures of OFF to ON transitions were interpreted as Ca2+ acting to activate the thick filaments. Alternatively, Ca2+ binding to troponin could initiate a Ca2+-dependent crosstalk from the thin filament to the thick filament via interfilament connections such as the myosin binding protein-C. Here, we exchanged native troponin in permeabilized porcine myocardium for troponin containing the cTnC D65A mutation, which disallows the activation of troponin through Ca2+ binding to determine if Ca2+-dependent thick filament activation persists in the absence of thin filament activation. After the exchange protocol, over 95% of the Ca2+-activated force was eliminated. Equatorial intensity ratio increased significantly in both WT and D65A exchanged myocardium with increasing Ca2+ concentration. The degree of helical ordering of the myosin heads decreased by the same amount in WT and D65A myocardium when Ca2+ concentration increased. These results are consistent with a direct effect of Ca2+ in activating the thick filament rather than an indirect effect due to Ca2+-mediated crosstalk between the thick and thin filaments.<br /> (© 2024 Mohran et al.)
Details
- Language :
- English
- ISSN :
- 1540-7748
- Volume :
- 156
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- The Journal of general physiology
- Publication Type :
- Academic Journal
- Accession number :
- 39302315
- Full Text :
- https://doi.org/10.1085/jgp.202413545