Back to Search Start Over

Chalcone derived bis-organosilane and its magnetic nanoparticles: Unveiling precision in selective Cu(II) ion detection and elucidating biocompatibility.

Authors :
Singh G
Malik P
Khurana S
Mithun
Markan P
Diskit T
Singh KN
Gill BS
Baliyan D
Source :
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy [Spectrochim Acta A Mol Biomol Spectrosc] 2025 Jan 15; Vol. 325, pp. 125124. Date of Electronic Publication: 2024 Sep 11.
Publication Year :
2025

Abstract

The escalating concern regarding the adverse effects of metal ion toxicity on both human health and environmental ecosystems necessitates the development of efficient detection methodologies. This study presents a focused investigation on the selective and sensitive detection of Cu(II) ions employing hybrid magnetic nanoparticles derived from chalcone-based bis-organosilane. These nanoparticles exhibit a notably low detection limit in the nano-scale range, rendering the sensor highly sensitive to Copper(II) ion detection while maintaining robust anti-interference capabilities, even in the presence of diverse metal ions. Real sample analysis confirms the sensor's efficacy in detecting Cu(II) ions below WHO-prescribed levels. Computational analyses reveal molecular interactions and biological activities, including potent antibacterial and antioxidant properties, suggesting promising applications. Furthermore, the biological effectiveness of chalcone-derived bis-organosilane is investigated, unveiling notable antibacterial efficacy and also exhibiting potential as a scavenger of free radicals, indicating promising applications in both antibacterial and antioxidant domains.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3557
Volume :
325
Database :
MEDLINE
Journal :
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Publication Type :
Academic Journal
Accession number :
39303335
Full Text :
https://doi.org/10.1016/j.saa.2024.125124