Back to Search Start Over

Discovery of a novel methionine biosynthetic route via O -phospho-l-homoserine.

Authors :
Hasebe F
Adachi K
Maruyama C
Hamano Y
Source :
Applied and environmental microbiology [Appl Environ Microbiol] 2024 Oct 23; Vol. 90 (10), pp. e0124724. Date of Electronic Publication: 2024 Sep 23.
Publication Year :
2024

Abstract

Methionine (Met), a sulfur-containing amino acid, is essential for the underlying biological processes in living organisms. In addition to its importance as a starting building block for peptide chain elongation in protein biosynthesis, Met is a direct precursor of S -adenosyl-l-methionine, an indispensable methyl donor molecule in primary and secondary metabolism. Streptomyces bacteria are well known to produce diverse secondary metabolites, but many strains lack canonical Met pathway genes for l-homocysteine, a direct precursor of Met in bacteria, plants, and archaea. Here, we report the identification of a novel gene ( metM ) responsible for the Met biosynthesis in Streptomyces strains and demonstrate the catalytic function of the gene product, MetM. We further identified the metO gene, a downstream gene of metM , and showed that it encodes a sulfur-carrier protein (SCP). In in vitro analysis, MetO was found to play an important role in a sulfur donor by forming a thiocarboxylated SCP. Together with MetO (thiocarboxylate), MetM directly converted O -phospho-l-homoserine to l-homocysteine. O -Phospho-l-homoserine is also known as an intermediate for threonine biosynthesis in bacteria and plants, and MetM shares sequence homology with threonine synthase. Our findings thus revealed that MetM seizes O -phospho-l-homoserine from the threonine biosynthetic pathway and uses it as an intermediate of the Met biosynthesis to generate the sulfur-containing amino acid. Importantly, this MetM/MetO pathway is highly conserved in Streptomyces bacteria and distributed in other bacteria and archaea.IMPORTANCEMethionine (Met) is a sulfur-containing proteinogenic amino acid. Moreover, Met is a direct precursor of S -adenosyl-l-methionine, an indispensable molecule for expanding the structural diversity of natural products. Because Met and its derivatives benefit humans, the knowledge of Met biosynthesis is important as a basis for improving their fermentation. Streptomyces bacteria are well known to produce diverse and valuable natural products, but many strains lack canonical Met pathway genes. Here, we identified a novel l-homocysteine synthase (MetM) in Streptomyces and demonstrated that it converts O -phospho-L-homoserine to l-homocysteine using a thiocarboxylated sulfur-carrier protein as a sulfur donor. Since the metM is distributed in other bacteria and archaea, our pioneering study contributes to understanding Met biosynthesis in these organisms.<br />Competing Interests: The authors declare no conflict of interest.

Details

Language :
English
ISSN :
1098-5336
Volume :
90
Issue :
10
Database :
MEDLINE
Journal :
Applied and environmental microbiology
Publication Type :
Academic Journal
Accession number :
39311576
Full Text :
https://doi.org/10.1128/aem.01247-24