Back to Search Start Over

Toward Quantum Noses: Quantum Chemosensing Based on Molecular Qubits in Metal-Organic Frameworks.

Authors :
Yamauchi A
Yanai N
Source :
Accounts of chemical research [Acc Chem Res] 2024 Oct 15; Vol. 57 (20), pp. 2963-2972. Date of Electronic Publication: 2024 Sep 26.
Publication Year :
2024

Abstract

ConspectusQuantum sensing leverages quantum properties to enhance the sensitivity and resolution of sensors beyond their classical sensing limits. Quantum sensors, such as diamond defect centers, have been developed to detect various physical properties, including magnetic fields and temperature. However, the spins of defects are buried within dense solids, making it difficult for them to strongly interact with molecular analytes. Therefore, nanoporous materials have been implemented in combination with electron spin center of molecules (molecular qubits) to produce quantum chemosensors that can distinguish various chemical substances. Molecular qubits have a uniform structure, and their properties can be precisely controlled by changing their chemical structure. Metal-organic frameworks (MOFs) are suitable for supporting molecular qubits because of their high porosity, structural regularity, and designability. Molecular qubits can be inserted in the MOF structures or adsorbed as guest molecules. The qubits in the MOF can interact with analytes upon exposure, providing an effective and tunable sensing platform.In this Account, we review the recent progress in qubit-MOF hybrids toward the realization of room-temperature quantum chemosensing. Molecular qubits can be introduced in controlled concentrations at targeted positions by exploiting metal ions, ligands, or guests that compose the MOF. Heavy metal-free organic chromophores have several outstanding features as molecular qubits; namely, they can be initialized by light irradiation and exhibit relatively long coherence times of submicroseconds to microseconds, even at room temperature. One detection method involves monitoring the hyperfine interaction between the electron spins of the molecular qubits and the nuclear spins of the analyte incorporated in the pore. There is also an indirect detection method that relies on the motional change in molecular qubits. If the motion of the molecular qubit changes with the adsorption of the analyte, it can be detected as a change in the spin relaxation process. This mechanism is unique to qubits exposed in nanopores, not observed in conventional qubits embedded in dense solids.By maximizing the guest recognition ability of MOFs and the environmental sensitivity of qubits, quantum chemosensing that recognizes specific chemical species in a highly selective and sensitive manner may be possible. It is difficult to distinguish between diverse chemical species by employing only one combination of MOF and qubit, but by creating arrays of different qubit-MOF hybrids, it would become possible to distinguish between various analytes based on pattern recognition. Inspired by the human olfactory mechanism, we propose the use of multiple qubit-MOF hybrids and pattern recognition to identify specific molecules. This system represents a quantum version of olfaction, and thus we propose the concept of a "quantum nose." Quantum noses may be used to recognize biometabolites and biomarkers and enable new medical diagnostic technologies and olfactory digitization.

Details

Language :
English
ISSN :
1520-4898
Volume :
57
Issue :
20
Database :
MEDLINE
Journal :
Accounts of chemical research
Publication Type :
Academic Journal
Accession number :
39324781
Full Text :
https://doi.org/10.1021/acs.accounts.4c00333